2 research outputs found

    Identification of 2‑Aminoacyl-1,3,4-thiadiazoles as Prostaglandin E<sub>2</sub> and Leukotriene Biosynthesis Inhibitors

    No full text
    The application of a multi-step scientific workflow revealed an unprecedented class of PGE2/leukotriene biosynthesis inhibitors with in vivo activity. Specifically, starting from a combinatorial virtual library of ∼4.2 × 105 molecules, a small set of compounds was identified for the synthesis. Among these, four novel 2-aminoacyl-1,3,4-thiadiazole derivatives (3, 6, 7, and 9) displayed marked anti-inflammatory properties in vitro by strongly inhibiting PGE2 biosynthesis, with IC50 values in the nanomolar range. The hit compounds also efficiently interfered with leukotriene biosynthesis in cell-based systems and modulated IL-6 and PGE2 biosynthesis in a lipopolysaccharide-stimulated J774A.1 macrophage cell line. The most promising compound 3 showed prominent in vivo anti-inflammatory activity in a mouse model, with efficacy comparable to that of dexamethasone, attenuating zymosan-induced leukocyte migration in mouse peritoneum with considerable modulation of the levels of typical pro-/anti-inflammatory cytokines

    Novel Analgesic/Anti-Inflammatory Agents: 1,5-Diarylpyrrole Nitrooxyalkyl Ethers and Related Compounds as Cyclooxygenase‑2 Inhibiting Nitric Oxide Donors

    No full text
    A series of 3-substituted 1,5-diarylpyrroles bearing a nitrooxyalkyl side chain linked to different spacers were designed. New classes of pyrrole-derived nitrooxyalkyl inverse esters, carbonates, and ethers (<b>7</b>–<b>10</b>) as COX-2 selective inhibitors and NO donors were synthesized and are herein reported. By taking into account the metabolic conversion of nitrooxyalkyl ethers (<b>9</b>, <b>10</b>) into corresponding alcohols, derivatives <b>17</b> and <b>18</b> were also studied. Nitrooxy derivatives showed NO-dependent vasorelaxing properties, while most of the compounds proved to be very potent and selective COX-2 inhibitors in in vitro experimental models. Further in vivo studies on compounds <b>9a</b>,<b>c</b> and <b>17a</b> highlighted good anti-inflammatory and antinociceptive activities. Compound <b>9c</b> was able to inhibit glycosaminoglycan (GAG) release induced by interleukin-1β (IL-1β), showing cartilage protective properties. Finally, molecular modeling and <sup>1</sup>H- and <sup>13</sup>C-NMR studies performed on compounds <b>6c</b>,<b>d</b>, <b>9c</b>, and <b>10b</b> allowed the right conformation of nitrooxyalkyl ester and ether side chain of these molecules within the COX-2 active site to be assessed
    corecore