63 research outputs found

    Virtuous laughter: we should teach medical learners the art of humor

    Get PDF

    Educational interventions to train healthcare professionals in end-of-life communication: a systematic review and meta-analysis

    Get PDF
    GRADE Summary of Findings for Primary Outcomes – Overall quality of evidence by GRADE criteria. (PDF 47 kb

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Principles of resource allocation and triage during COVID-19

    No full text
    The COVID-19 pandemic confronted Canadians with the fact that our health care systems may not always have enough to go around. Critical care resources, specifically, were stretched far beyond the limits of what was thought possible. In the spring of 2021, the exponential growth of patients with COVID-19 brought Ontario’s ICUs frighteningly near the breaking point. When a health system’s resources are overwhelmed by the demands placed upon them, allocation of scarce resources is typically performed by triage — a formalized system to determine who receives critical care resources and who does not. In this commentary, we will explain the rationale for the use of a formal triage protocol during times of resource scarcity; review the ethical foundations of an approach to resource allocation; outline the process of triage protocol development in Ontario during the COVID-19 pandemic, and highlight some lessons learned for the future

    Prone positioning during CPAP therapy in SARS-CoV-2 pneumonia: a concise clinical review

    No full text
    During the COVID-19 pandemic, the number of patients with hypoxemic acute respiratory failure (ARF) due to SARS-CoV-2 pneumonia threatened to overwhelm intensive care units. To reduce the need for invasive mechanical ventilation (IMV), clinicians tried noninvasive strategies to manage ARF, including the use of awake prone positioning (PP) with continuous positive airway pressure (CPAP). In this article, we review the patho-physiologic rationale, clinical effectiveness and practical issues of the use of PP during CPAP in non-intubated, spontaneously breathing patients affected by SARS-CoV-2 pneumonia with ARF. Use of PP during CPAP appears to be safe and feasible and may have a lower rate of adverse events compared to IMV. A better response to PP is observed among patients in early phases of acute respiratory distress syndrome. While PP during CPAP may improve oxygenation, the impact on the need for intubation and mortality remains unclear. It is possible to speculate on the role of PP during CPAP in terms of improvement of ventilation mechanics and reduction of strain stress
    corecore