555 research outputs found

    Headache and type 2 diabetes association: a US national ambulatory case-control study

    Get PDF
    Objective We investigate the joint observation between type 2 diabetes and headache using a case-control study of a US ambulatory dataset. Background Recent whole-population cohort studies propose that type 2 diabetes may have a protective effect against headache prevalence. With headaches ranked as a leading cause of disability, headache-associated comorbidities could help identify shared molecular mechanisms. Methods We performed a case-control study using the US National Ambulatory Medical Care Survey, 2009, on the joint observation between headache and specific comorbidities, namely type 2 diabetes, hypertension and anxiety, for all patients between 18 and 65 years of age. The odds ratio of having a headache and a comorbidity were calculated using conditional logistic regression, controlling for gender and age over a study population of 3,327,947 electronic health records in the absence of prescription medication data. Results We observed estimated odds ratio of 0.89 (95% CI: 0.83-0.95) of having a headache and a record of type 2 diabetes over the population, and 0.83 (95% CI: 2.02-2.57) and 0.89 (95% CI: 3.00-3.49) for male and female, respectively. Conclusions We find that patients with type 2 diabetes are less likely to present a recorded headache indication. Patients with hypertension are almost twice as likely of having a headache indication and patients with an anxiety disorder are almost three times as likely. Given the possibility of confounding indications and prescribed medications, additional studies are recommended

    Genes of the serotonergic and dopaminergic pathways and their interaction affect the expression of Behavioural and Psychological Symptoms in Dementia (BPSD).

    Get PDF
    Although there is evidence for the involvement of genes of serotonergic and dopaminergic systems in the manifestation of the Behavioural and Psychological Symptoms in Dementia (BPSD), genetic association studies are contradictory. We used 1008 probable AD patients from the UK and applied a Multiple Indicators Multiple Causes (MIMIC) approach to investigate the effect of 11 polymorphisms in the serotonergic and dopaminergic systems, on four behavioural sub-phenotypes, namely "psychosis"," moods", "agitation" and "behavioural dyscontrol", as well as on 12 NPI items. Significant findings included the association of DRD1 A48G with "psychosis" (p=0.037), the association of DAT1 VNTR with "agitation" (p=0.006) and the association of DRD4 with "moods" sub-phenotype (p=0.008). In addition, associations were identified between DRD1 A48G and DAT1 VNTR with aberrant motor behaviour (AMB) symptoms (p=0.001 and p=0.015 respectively), between DRD4 and sleep disturbances (p=0.018) and between 5HTTLPR and apathy (p=0.033). Finally, significant interactions were observed between COMT Val158Met and 5HTTLPR with "psychosis" (p=0.026), between HTTLPR and STin2 with "psychosis" (p=0.005), between DAT1 3'UTR VNTR and COMT Val158Met with "agitation" (p=0.0001) and between DAT1 3'UTR VNTR and 5HTTLPR with the "moods" factor (p=0.0027). The complexity of the interrelations between genetic variation, behavioural symptoms and clinical variables was efficiently captured by this MIMIC model

    Alzheimer's disease in humans and other animals; a consequence of post-reproductive lifespan and longevity rather than ageing

    Get PDF
    Research in the author’s laboratories is supported by the NIHR, MRC, ARUK, Alzheimer’s Society, Wellcome Trust and the EUIntroduction Alzheimer's disease and diabetes mellitus are linked by epidemiology, genetics, and molecular pathogenesis. They may also be linked by the remarkable observation that insulin signaling sets the limits on longevity. In worms, flies, and mice, disrupting insulin signaling increases life span leading to speculation that caloric restriction might extend life span in man. It is our contention that man is already a long-lived organism, specifically with a remarkably high postfertility life span, and that it is this that results in the prevalence of Alzheimer's disease and diabetes. Methods We review evidence for this hypothesis that carries specific predictions including that other animals with exceptionally long postreproductive life span will have increased risk of both diabetes and Alzheimer's disease. Results and Conclusions We present novel evidence that Dolphin, like man, an animal with exceptional longevity, might be one of the very few natural models of Alzheimer's disease.PostprintPeer reviewe

    Glycosylated clusterin species facilitate Aβ toxicity in human neurons

    Get PDF
    We thank members of Synthego Corporation generating the CLU exon 2 knockout iPSC lines and their support in this research. This work was supported by AstraZeneca as part of a CASE studentship and the Valat-Jones Foundation (Nigel and Françoise Jones).Clusterin (CLU) is one of the most significant genetic risk factors for late onset Alzheimer’s disease (AD). However, the mechanisms by which CLU contributes to AD development and pathogenesis remain unclear. Studies have demonstrated that the trafficking and localisation of glycosylated CLU proteins is altered by CLU-AD mutations and amyloid-β (Aβ), which may contribute to AD pathogenesis. However, the roles of non-glycosylated and glycosylated CLU proteins in mediating Aβ toxicity have not been studied in human neurons. iPSCs with altered CLU trafficking were generated following the removal of CLU exon 2 by CRISPR/Cas9 gene editing. Neurons were generated from control (CTR) and exon 2 −/− edited iPSCs and were incubated with aggregated Aβ peptides. Aβ induced changes in cell death and neurite length were quantified to determine if altered CLU protein trafficking influenced neuronal sensitivity to Aβ. Finally, RNA-Seq analysis was performed to identify key transcriptomic differences between CLU exon 2 −/− and CTR neurons. The removal of CLU exon 2, and the endoplasmic reticulum (ER)-signal peptide located within, abolished the presence of glycosylated CLU and increased the abundance of intracellular, non-glycosylated CLU. While non-glycosylated CLU levels were unaltered by Aβ25–35 treatment, the trafficking of glycosylated CLU was altered in control but not exon 2 −/− neurons. The latter also displayed partial protection against Aβ-induced cell death and neurite retraction. Transcriptome analysis identified downregulation of multiple extracellular matrix (ECM) related genes in exon 2 −/− neurons, potentially contributing to their reduced sensitivity to Aβ toxicity. This study identifies a crucial role of glycosylated CLU in facilitating Aβ toxicity in human neurons. The loss of these proteins reduced both, cell death and neurite damage, two key consequences of Aβ toxicity identified in the AD brain. Strikingly, transcriptomic differences between exon 2 −/− and control neurons were small, but a significant and consistent downregulation of ECM genes and pathways was identified in exon 2 −/− neurons. This may contribute to the reduced sensitivity of these neurons to Aβ, providing new mechanistic insights into Aβ pathologies and therapeutic targets for AD.Peer reviewe

    Complement biomarkers as predictors of disease progression in Alzheimer's disease

    Get PDF
    There is a critical unmet need for reliable markers of disease and disease course in mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). The growing appreciation of the importance of inflammation in early AD has focused attention on inflammatory biomarkers in cerebrospinal fluid or plasma; however, non-specific inflammation markers have disappointed to date. We have adopted a targeted approach, centered on an inflammatory pathway already implicated in the disease. Complement, a core system in innate immune defense and potent driver of inflammation, has been implicated in pathogenesis of AD based on a confluence of genetic, histochemical, and model data. Numerous studies have suggested that measurement of individual complement proteins or activation products in cerebrospinal fluid or plasma is useful in diagnosis, prediction, or stratification, but few have been replicated. Here we apply a novel multiplex assay to measure five complement proteins and four activation products in plasma from donors with MCI, AD, and controls. Only one complement analyte, clusterin, differed significantly between control and AD plasma (controls, 295 mg/l; AD, 388 mg/l: p < 10- 5). A model combining clusterin with relevant co-variables was highly predictive of disease. Three analytes (clusterin, factor I, terminal complement complex) were significantly different between MCI individuals who had converted to dementia one year later compared to non-converters; a model combining these three analytes with informative co-variables was highly predictive of conversion. The data confirm the relevance of complement biomarkers in MCI and AD and build the case for using multi-parameter models for disease prediction and stratification

    Differential effects of apolipoprotein E isoforms on phosphorylation at specific sites on tau by glycogen synthase kinase-3β identified by nano-electrospray mass spectrometry

    Get PDF
    AbstractPreviously published data have shown an allele-specific variation in the in vitro binding of apolipoprotein E (apoE) to tau, which prompted the hypothesis that apoE binding may protect tau from phosphorylation, apoE3 being more efficient than apoE4. We have, therefore, investigated the effects of apoE on tau phosphorylation in vitro by the proline-directed kinase, glycogen synthase kinase (GSK)-3β. The phosphopeptide maps of tau alone, of tau with apoE3 and of tau with apoE4 were very similar. When apoE2 was present a further four spots were evident. Additionally, of the 15 peptides phosphorylated in the presence or absence of apoE, subtle differences, some isoform-specific, in the relative amounts of phosphorylation were observed
    • …
    corecore