1,215 research outputs found

    Neglected tropical diseases in the genomics era: re-evaluating the impact of new drugs and mass drug administration.

    Get PDF
    Simon Croft answers Genome Biology's questions on ways to approach neglected tropical diseases in the genomics era, including re-evaluating the impact of new drugs and mass drug administration

    Leishmania and other intracellular pathogens: selectivity, drug distribution and PK-PD.

    Get PDF
    New drugs and treatments for diseases caused by intracellular pathogens, such as leishmaniasis and the Leishmania species, have proved to be some of the most difficult to discover and develop. The focus of discovery research has been on the identification of potent and selective compounds that inhibit target enzymes (or other essential molecules) or are active against the causative pathogen in phenotypic in vitro assays. Although these discovery paradigms remain an essential part of the early stages of the drug R & D pathway, over the past two decades additional emphasis has been given to the challenges needed to ensure that the potential anti-infective drugs distribute to infected tissues, reach the target pathogen within the host cell and exert the appropriate pharmacodynamic effect at these sites. This review will focus on how these challenges are being met in relation to Leishmania and the leishmaniases with lessons learned from drug R & D for other intracellular pathogens

    Leishmaniasis: new approaches to disease control.

    Get PDF
    The leishmaniases afflict the world's poorest populations. Among the two million new cases each year in the 88 countries where the disease is endemic (fig 1), it is estimated that 80% earn less than $2 a day. Human infections with Leishmania protozoan parasites, transmitted via the bite of a sandfly, cause visceral, cutaneous, or mucocutaneous leishmaniasis. The global burden of leishmaniasis has remained stable for some years, causing 2.4 million disability adjusted life years (DALYs) lost and 59 000 deaths in 2001. Neglected by researchers and funding agencies, leishmaniasis control strategies have varied little for decades, but in recent years there have been exciting advances in diagnosis, treatment, and prevention. These include an immunochromatographic dipstick for diagnosing visceral leishmaniasis; the licensing of miltefosine, the first oral drug for visceral leishmaniasis; and evidence that the incidence of zoonotic visceral leishmaniasis in children can be reduced by providing dogs with deltamethrin collars. There is also hope that the first leishmaniasis vaccine will become available within a decade. Here we review these developments and identify priorities for research

    Noncovalent complexation of amphotericin-B with Poly(α-glutamic acid).

    No full text
    A noncovalent complex of amphotericin B (AmB) and poly(α-glutamic acid) (PGA) was prepared to develop a safe and stable formulation for the treatment of leishmaniasis. The loading of AmB in the complex was in the range of ∼20-50%. AmB was in a highly aggregated state with an aggregation ratio often above 2.0. This complex (AmB-PGA) was shown to be stable and to have reduced toxicity to human red blood cells and KB cells compared to the parent compound; cell viability was not affected at an AmB concentration as high as 50 and 200 μg/mL respectively. This AmB-PGA complex retained AmB activity against intracellular Leishmania major amastigotes in the differentiated THP-1 cells with an EC50 of 0.07 ± 0.03-0.08 ± 0.01 μg/mL, which is similar to Fungizone (EC50 of 0.06 ± 0.01 μg/mL). The in vitro antileishmanial activity of the complex against Leishmania donovani was retained after storage at 37 °C for 7 days in the form of a solution (EC50 of 0.27 ± 0.03 to 0.35 ± 0.04 μg/mL) and for 30 days as a solid (EC50 of 0.41 ± 0.07 to 0.63 ± 0.25 μg/mL). These encouraging results indicate that the AmB-PGA complex has the potential for further development

    Pharmacological approaches to antitrypanosomal chemotherapy

    Get PDF
    There is an urgent need for new drugs for the chemotherapy of human African trypanosomiasis, Chagas disease and leishmaniasis. Progress has been made in the identification and characterization of novel drug targets for rational chemotherapy and inhibitors of trypanosomatid glycosomal enzymes, trypanothione reductase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, cysteine proteases and of the purine and sterol biosynthetic pathways. However, less attention has been paid to the pharmacological aspects of drug design or to the use of drug delivery systems in the chemotherapy of African trypanosomiasis and Chagas disease. A review of research on pharmacology and drug delivery systems shows that there are new opportunities for improving the chemotherapy of these diseases

    PKDL--a drug related phenomenon?

    Get PDF

    Antiprotozoal glutathione derivatives with flagellar membrane binding activity against T. brucei rhodesiense.

    Get PDF
    A new series of N-substituted S-(2,4-dinitrophenyl)glutathione dibutyl diesters were synthesized to improve in vitro anti-protozoal activity against the pathogenic parasites Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania donovani. The results obtained indicate that N-substituents enhance the inhibitory properties of glutathione diesters whilst showing reduced toxicity against KB cells as in the cases of compounds 5, 9, 10, 16, 18 and 19. We suggest that the interaction of N-substituted S-(2,4-dinitrophenyl) glutathione dibutyl diesters with T. b. brucei occurs mainly by weak hydrophobic interactions such as London and van der Waals forces. A QSAR study indicated that the inhibitory activity of the peptide is associated negatively with the average number of C atoms, NC and positively to SZX, the ZX shadow a geometric descriptor related to molecular size and orientation of the compound. HPLC-UV studies in conjunction with optical microscopy indicate that the observed selectivity of inhibition of these compounds against bloodstream form T. b. brucei parasites in comparison to L. donovani under the same conditions is due to intracellular uptake via endocytosis in the flagellar pocket

    Topical formulations of miltefosine for cutaneous leishmaniasis in a BALB/c mouse model.

    Get PDF
    UNLABELLED: Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania and affects approximately 10 million people worldwide. Currently available drugs are not ideal due to high cost, toxicity, parenteral administration and suboptimal efficacy. Miltefosine is the only oral treatment (Impavido®) available to treat CL, given over a period of 28 days with common side effects such as vomiting and diarrhoea. OBJECTIVE: To explore the local application of miltefosine as a topical formulation to enhance activity and reduce the drug's adverse effects. METHODS: The antileishmanial activity of miltefosine was confirmed in vitro against several Leishmania species. The permeation of miltefosine, in different solvents and solvent combinations, through BALB/c mouse skin was evaluated in vitro using Franz diffusion cells. The topical formulations which enabled the highest drug permeation or skin disposition were tested in vivo in BALB/c mice infected with L. major. KEY FINDINGS: The overall permeation of miltefosine through skin was low regardless of the solvents used. This was reflected in limited antileishmanial activity of the drug formulations when applied topically in vivo. All topical formulations caused skin irritation. CONCLUSIONS: We conclude that miltefosine is not an appropriate candidate for the topical treatment of CL

    Activity of Amphotericin B-Loaded Chitosan Nanoparticles against Experimental Cutaneous Leishmaniasis.

    Get PDF
    Chitosan nanoparticles have gained attention as drug delivery systems (DDS) in the medical field as they are both biodegradable and biocompatible with reported antimicrobial and anti-leishmanial activities. We investigated the application of chitosan nanoparticles as a DDS for the treatment of cutaneous leishmaniasis (CL) by preparing two types of chitosan nanoparticles: positively charged with tripolyphosphate sodium (TPP) and negatively charged with dextran sulphate. Amphotericin B (AmB) was incorporated into these nanoparticles. Both types of AmB-loaded nanoparticles demonstrated in vitro activity against Leishmania major intracellular amastigotes, with similar activity to unencapsulated AmB, but with a significant lower toxicity to KB-cells and red blood cells. In murine models of CL caused by L. major, intravenous administration of AmB-loaded chitosan-TPP nanoparticles (Size = 69 ± 8 nm, Zeta potential = 25.5 ± 1 mV, 5 mg/kg/for 10 days on alternate days) showed a significantly higher efficacy than AmBisome® (10 mg/kg/for 10 days on alternate days) in terms of reduction of lesion size and parasite load (measured by both bioluminescence and qPCR). Poor drug permeation into and through mouse skin, using Franz diffusion cells, showed that AmB-loaded chitosan nanoparticles are not appropriate candidates for topical treatment of CL
    • …
    corecore