50,622 research outputs found

    Status of the ILC Main Linac BPM R&D

    Full text link
    An introduction and the status of R&D activities for a high-resolution, "cold" beam position monitor (BPM) and the related read-out electronics are discussed. Two different BPM detector concepts, to be attached to the SC quadrupole and located inside the ILC cryomodule, are currently under investigation: A resonant dipole-mode cavity-style BPM pickup, developed at Fermilab, and a re-entrant resonant coaxial waveguide BPM, designed by CEA-Saclay. While the 1.5 GHz dipole-mode cavity BPM is still in the R&D phase, the re-entrant BPM has already passed first beam tests, including its read-out system. Furthermore, the LAPP group is developing radiation tolerant digital read-out systems, which are tested at the CLIC test facility (CTF).Comment: LCWS / ILC08 conference contribution, 6 pages, 6 figure

    Social Network Games with Obligatory Product Selection

    Get PDF
    Recently, Apt and Markakis introduced a model for product adoption in social networks with multiple products, where the agents, influenced by their neighbours, can adopt one out of several alternatives (products). To analyze these networks we introduce social network games in which product adoption is obligatory. We show that when the underlying graph is a simple cycle, there is a polynomial time algorithm allowing us to determine whether the game has a Nash equilibrium. In contrast, in the arbitrary case this problem is NP-complete. We also show that the problem of determining whether the game is weakly acyclic is co-NP hard. Using these games we analyze various types of paradoxes that can arise in the considered networks. One of them corresponds to the well-known Braess paradox in congestion games. In particular, we show that social networks exist with the property that by adding an additional product to a specific node, the choices of the nodes will unavoidably evolve in such a way that everybody is strictly worse off.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    The Efficacy of Group Selection is Increased by Coexistence Dynamics within Groups

    No full text
    Selection on the level of loosely associated groups has been suggested as a route towards the evolution of cooperation between individuals and the subsequent formation of higher-level biological entities. Such group selection explanations remain problematic, however, due to the narrow range of parameters under which they can overturn within-group selection that favours selfish behaviour. In principle, individual selection could act on such parameters so as to strengthen the force of between-group selection and hence increase cooperation and individual fitness, as illustrated in our previous work. However, such a process cannot operate in parameter regions where group selection effects are totally absent, since there would be no selective gradient to follow. One key parameter, which when increased often rapidly causes group selection effects to tend to zero, is initial group size, for when groups are formed randomly then even moderately sized groups lack significant variance in their composition. However, the consequent restriction of any group selection effect to small sized groups is derived from models that assume selfish types will competitively exclude their more cooperative counterparts at within-group equilibrium. In such cases, diversity in the migrant pool can tend to zero and accordingly variance in group composition cannot be generated. In contrast, we show that if within-group dynamics lead to a stable coexistence of selfish and cooperative types, then the range of group sizes showing some effect of group selection is much larger

    Quantum Hall Physics - hierarchies and CFT techniques

    Full text link
    The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter physics during the past thirty years, has generated many groundbreaking new ideas and concepts. Very early on it was realized that the zoo of emerging states of matter would need to be understood in a systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further work which has continued to this day. Since that time the idea of hierarchies of quasiparticles condensing to form new states has been a pillar of our understanding of fractional quantum Hall physics. In the thirty years that have passed since then, a number of new directions of thought have advanced our understanding of fractional quantum Hall states, and have extended it in new and unexpected ways. Among these directions is the extensive use of topological quantum field theories and conformal field theories, the application of the ideas of composite bosons and fermions, and the study of nonabelian quantum Hall liquids. This article aims to present a comprehensive overview of this field, including the most recent developments.Comment: added section on experimental status, 59 pages+references, 3 figure

    Response Function of the Fractional Quantized Hall State on a Sphere II: Exact Diagonalization

    Full text link
    We study the excitation spectra and the dynamical structure factor of quantum Hall states in a finite size system through exact diagonalization. Comparison is made between the numerical results so obtained and the analytic results obtained from a modified RPA in the preceding companion paper. We find good agreement between the results at low energies.Comment: 22 pages (REVTeX 3.0). 10 figures available on request. Complete postscript file (including figures) for this paper are available on the World Wide Web at http://cmtw.harvard.edu/~simon/ ; Preprint number HU-CMT-94S0

    Dispersion and fidelity in quantum interferometry

    Full text link
    We consider Mach-Zehnder and Hong-Ou-Mandel interferometers with nonclassical states of light as input, and study the effect that dispersion inside the interferometer has on the sensitivity of phase measurements. We study in detail a number of different one- and two-photon input states, including Fock, dual Fock, N00N states, and photon pairs from parametric downconversion. Assuming there is a phase shift Ļ•0\phi_0 in one arm of the interferometer, we compute the probabilities of measurement outcomes as a function of Ļ•0\phi_0, and then compute the Shannon mutual information between Ļ•0\phi_0 and the measurements. This provides a means of quantitatively comparing the utility of various input states for determining the phase in the presence of dispersion. In addition, we consider a simplified model of parametric downconversion for which probabilities can be explicitly computed analytically, and which serves as a limiting case of the more realistic downconversion model.Comment: 12 pages, 14 figures. Submitted to Physical Review
    • ā€¦
    corecore