5 research outputs found

    Effect of La2O3 addition and O-2 atmosphere on the electric properties of SnO2TiO2

    No full text
    The electric properties of (Sn, Ti)O-2 doped with 1.00 mol% CoO, 0.05 mol% Nb2O5 and xmol% La2O3 (0.25 less than or equal to x less than or equal to 1.00) have been studied. Sn0.25Ti0.75Co0.01Nb0.005 doped with 0.50 mol% La2O3 has a nonlinearity coefficient of 6. An increase in the concentration of La2O3 raised its resistivity, thereby altering the electric properties of the material. A thermal treatment in oxygen atmosphere increased the nonlinearity coefficient to a value of 9. (C) 2003 Elsevier B.V. All rights reserved

    Low-voltage varistor based on (Sn,Ti)O-2 ceramics

    No full text
    A description is given of the nonohmic behavior obtained in (SnxTi1-x)O-2-based systems. A matrix founded on (SnxTi1-x)O-2-based systems doped with Nb2O5 leads to a low-voltage varistor system with nonlinear coefficient values of similar to9. The presence of the back-to-back Schottky-type barrier is observed based on the voltage dependence of the capacitance. When doped with CoO, the (SnxTi1-x)O(2)(.)based system presents higher nonlinear coefficient values (>30) than does the SnO2-based varistor system

    Photoluminescence in disordered Zn2TiO4

    No full text
    In this work, the polymeric precursor method Was used to obtain disordered Zn2TiO4 powders, either Undoped or doped with Sn4+, Cr3+ and V5+, to be applied its photoluininescent material. The characterization was undertaken by means of thermal analysis (TG and DTA), X-ray diffraction (XRD), infrared spectroscopy (IR) and photoluminescence (PL). Previous works stated that titanate octahedra containing a short Ti-O distance show efficient luminescence at roorn temperature if these octahedra are isolated from each other. In the present work, the phenomenon was observed in condensed octahedra, sharing edges. The room temperature PL noticed in undoped Zn2TiO4 had its intensity increased by the dopant addition-the increase was of about 300% for V5+ doping 400% for Cr3+ and 800% for Sn4+. (c) 2005 Elsevier B.V. All rights reserved

    The role of structural order-disorder for visible intense photoluminescence in the BaZr0.5Ti0.5O3 thin films

    No full text
    The nature of the intense visible room temperature photoluminescence of BaZr0.5Ti0.5O3 non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The photoluminescence measurements reveal that the emission intensity changes with the degree of disorder in the BaZr0.5Ti0.5O3 lattice. First principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline model and of structurally disordered models in order to detect the influence of disorder on the electronic structure. An analysis of the electronic charge distribution reveals local polarization in the disordered structures. The relevance of the present theoretical and experimental results on the photoluminescence behavior of BZT is discussed. (C) 2005 Elsevier B.V. All rights reserved

    Evaluation of rare earth oxides doping SnO2.(Co1/4,Mn3/4)O-based varistor system

    No full text
    The present paper aims to verify the inuence of rare earth oxide such as lanthanum (La2O3) and neodymium (Nd2O3) doping SnO2 + 0.25%CoO + 0.75%MnO2 + 0.05%Ta2O5 system. The analysis focus on microstructural inuence on electrical properties. Microstructural analysis were made by using Transmission Electron Microscopy (TEM) at different regions of the samples. From such analysis it was found that La2O3 and Nd2O3 oxides cause heterogeneous segregation and precipitation at grain boundary concerning cobalt and manganese, decreasing the nonohmic electrical properties, as discussed, likely due to the increasing of grain boundary non-active potential barriers
    corecore