18 research outputs found

    Concurrent circulation of dengue serotype 1, 2 and 3 among acute febrile patients in Cameroon

    Get PDF
    Acute febrile patients presenting at hospitals in Douala, Cameroon between July and December 2020, were screened for dengue infections using real time RT-PCR on fragments of the 5’ and 3’ UTR genomic regions. In total, 12.8% (41/320) of cases examined were positive for dengue. Dengue virus 3 (DENV-3) was the most common serotype found (68.3%), followed by DENV-2 (19.5%) and DENV-1 (4.9%). Co-infections of DENV-3 and DENV-2 were found in 3 cases. Jaundice and headache were the most frequent clinical signs associated with infection and 56% (23/41) of the cases were co-infections with malaria. Phylogenetic analysis of the envelope gene identified DENV-1 as belonging to genotype V, DENV-2 to genotype II and DENV-3 to genotype III. The simultaneous occurrence of three serotypes in Douala reveals dengue as a serious public health threat for Cameroon and highlights the need for further epidemiological studies in the major cities of this region

    Seroprevalence of Rift Valley fever virus in domestic ruminants of various origins in two markets of Yaoundé, Cameroon

    Get PDF
    Background: Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic in Africa. With little known of the burden or epidemiology of RVF virus (RVFV) in Cameroon, this study aimed to determine the seroprevalence of RVFV in domestic ruminants of various origins in two markets of Yaoundé, Cameroon. Methodology/Principal findings: The origin of animals randomly sampled at two livestock markets in Yaoundé were recorded and plasma samples collected for competitive and capture Enzyme-linked Immunosorbent Assay (ELISA) to determine the prevalence of Immunoglobulins G (IgG) and Immunoglobulins M (IgM) antibodies. Following ELISA IgM results, a real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to detect RVFV RNA. In June-August 2019, February-March 2020, and March-April 2021, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. RVFV IgG seroprevalence was 25.7% for all animals, 42.2% in cattle, 2.7% in sheep, and 2.4% in goats. However, IgM seroprevalence was low, at 0.9% in all animals, 1.1% in cattle, 1.4% in sheep, and 0% in goats. The seroprevalence rates varied according to the animal’s origin with the highest rate (52.6%) in cattle from Sudan. In Cameroon, IgG and IgM rates respectively were 45.1% and 2.8% in the North, 44.8% and 0% in the Adamawa, 38.6% and 1.7% in the Far-North. All IgM positive samples were from Cameroon. In cattle, 2/5 IgM positive samples were also IgG positive, but both IgM positive samples in sheep were IgG negative. Three (42.9%) IgM positive samples were positive for viral RVFV RNA using qRT-PCR but given the high ct values, no amplicon was obtained. Conclusion/Significance: These findings confirm the circulation of RVFV in livestock in Cameroon with prevalence rates varying by location. Despite low IgM seroprevalence rates, RVF outbreaks can occur without being noticed. Further epidemiological studies are needed to have a broad understanding of RVFV transmission in Cameroon

    Molecular and serological evidence of Crimean-Congo hemorrhagic fever orthonairovirus prevalence in livestock and ticks in Cameroon

    Get PDF
    Introduction: Despite a high fatality rate in humans, little is known about the occurrence of Crimean-Congo hemorrhagic fever virus (CCHFV) in Cameroon. Hence, this pioneer study was started with the aim of determining the prevalence of CCHFV in domestic ruminants and its potential vector ticks in Cameroon. Methods: A cross-sectional study was carried out in two livestock markets of Yaoundé to collect blood and ticks from cattle, sheep, and goats. CCHFV-specific antibodies were detected in the plasma using a commercial ELISA assay and confirmed using a modified seroneutralization test. Ticks were screened for the presence of orthonairoviruses by amplification of a fragment of the L segment using RT-PCR. Phylogeny was used to infer the genetic evolution of the virus. Results: Overall, 756 plasma samples were collected from 441 cattle, 168 goats, and 147 sheep. The seroprevalence of CCHFV was 61.77% for all animals, with the highest rate found in cattle (433/441, 98.18%) followed by sheep (23/147, 15.65%), and goats (11/168, 6.55%), (p-value < 0.0001). The highest seroprevalence rate was found in cattle from the Far North region (100%). Overall, 1500 ticks of the Rhipicephalus (773/1500, 51.53%), Amblyomma (341/1500, 22.73%), and Hyalomma (386/1500, 25.73%) genera were screened. CCHFV was identified in one Hyalomma truncatum pool collected from cattle. Phylogenetic analysis of the L segment classified this CCHFV strain within the African genotype III. Conclusion: These seroprevalence results call for additional epidemiological studies on CCHFV, especially among at-risk human and animal populations in high-risk areas of the country

    Complete Genome Sequence of the Tataguine Virus, Isolated in the Central African Republic in 1972 from a Human with an Acute Febrile Syndrome

    No full text
    International audienceTataguine virus (TATV) is an orthobunyavirus that causes febrile illnesses in Africa. Here, we report the complete genome sequences of TATV strain HB72P583, isolated in the Central African Republic in 1972. Several genetic variations were detected in the small (S), medium (M), and large (L) segments relative to a TATV strain isolated in Nigeria in 1966

    Full-Length Genome Sequence of a Sindbis Virus Strain Isolated from Culex cinereus in 1977 in Bozo, Central African Republic

    No full text
    International audienceWe report here the complete genome sequence of a Sindbis virus (SINV) strain, ArB7761, isolated in 1977 in the Central African Republic. This strain, closely related to the Babanki virus, belongs to the SINV genotype I clade

    Molecular Characterization of the Kamese Virus, an Unassigned Rhabdovirus, Isolated from Culex pruina in the Central African Republic

    No full text
    International audienceRhabdoviridae is one of the most diversified families of RNA viruses whose members infect a wide range of plants, animals, and arthropods. The members of this family are classified into 13 genera and >150 unassigned viruses. Here, we sequenced the complete genome of a rhabdovirus belonging to the Hart Park serogroup, the Kamese virus (KAMV), isolated in 1977 from Culex pruina in the Central African Republic. The genomic sequence showed an organization typical of rhabdoviruses with additional genes in the P-M and G-L intergenic regions, as already reported for the Hart Park serogroup. Our Kamese strain (ArB9074) had 98% and 78.8% nucleotide sequence similarity with the prototypes of the KAMV and Mossuril virus isolated in Uganda and Mozambique in two different Culex species, respectively. Moreover, the protein sequences had 98-100% amino acid similarity with the prototype of the KAMV, except for an additional gene (U3) that showed a divergence of 6%. These molecular data show that our strain of the KAMV is genetically close to the Culex annuliorus strain that was circulating in Uganda in 1967. However, this study suggests the need to improve our knowledge of the KAMV to better understand its behavior, its life cycle, and its potential reservoirs

    Infestation rates, seasonal distribution, and genetic diversity of ixodid ticks from livestock of various origins in two markets of Yaoundé, Cameroon

    Get PDF
    Little is known about the impact of ticks on livestock and humans in Cameroon. This study aimed to determine the prevalence, seasonal variation, and genetic diversity of hard ticks in the country. Ticks were collected during a cross‐sectional survey on domestic livestock in two markets of Yaoundé in 2019 and 2020 and identified using morphological keys, 16S ribosomal DNA, (16S rDNA), and the cytochrome c oxidase subunit 1 (Cox1) genes. The infestation rates were 39.18%, 11.53%, and 2.74% in cattle, sheep, and goats respectively. Three genera of ticks were identified, Rhipicephalus, Amblyomma, and Hyalomma comprising eleven tick species. The main species were Rhipicephalus decoloratus (30.25%), R. microplus (24.43%), and Amblyomma variegatum (12.96%). Rhipicephalus spp. (81.31%) and Amblyomma variegatum (51.54%) were abundant during the rainy season, while Hyalomma spp. (83.86%) during the dry season (p‐value <0.00001). Cox1 and 16S rDNA analysis showed a high level of genetic diversity among tick species with sequences close to those observed across Africa. Phylogenetic analysis revealed that our R. microplus belong to clade A and we identified R. sanguineus s.l. as R. linnea. This study shows a high tick infestation rate in cattle, while low in small ruminants with an extensive diversity of tick species, including several known vectors of important tick‐borne diseases

    Continuous Circulation of Yellow Fever among Rural Populations in the Central African Republic

    No full text
    International audienceYellow fever remains a public-health threat in remote regions of Africa. Here, we report the identification and genetic characterisation of one yellow-fever case observed during the investigation of a cluster of nine suspected haemorrhagic fever cases in a village in the Central African Republic. Samples were tested using real-time RT-PCR targeting the main African haemorrhagic fever viruses. Following negative results, we attempted virus isolation on VERO E6 cells and newborn mice and rescreened the samples using rRT-PCR. The whole viral genome was sequenced using an Illumina NovaSeq 6000 sequencer. Yellow-fever virus (YFV) was isolated from one woman who reported farming activities in a forest setting several days before disease onset. Phylogenetic analysis shows that this strain belongs to the East-Central African YFV genotype, with an estimated emergence some 63 years ago. Finally, five unique amino-acid changes are present in the capsid, envelop, NS1A, NS3, and NS4B proteins. More efforts are required to control yellow-fever re-emergence in resource-limited settings

    Molecular characterization of a new highly divergent Mobala related arenavirus isolated from Praomys sp. rodents

    No full text
    International audienceArenaviruses represent a family of viruses that are naturally present in rodents belonging to subfamily Murinae, Neotominae or Sigmodontinae. Except for Lassa virus, little information is available on other Old-World arenaviruses. Here, we describe strain AnRB3214, a virus isolated from a presumed Praomys sp. rodent in the Central African Republic in 1981 and assigned to Ippy virus based on antigenic similarity. The strain was simultaneously sequenced on Illumina NovaSeq 6000 and MinION Mk1B devices and analysed with various bioinformatics tools. We show that the best genome coverage and depth were obtained with the Kaiju and Minimap2 classification and identification tools, on either the MinION or the Illumina reads. The genetic analysis of AnRB3214 fragments showed 68% to 79% similarity with the Mobala and Gairo mammarenaviruses at the nucleic acid level. Strain AnRB3214 had a truncated nucleoprotein smaller than that of other Old World arenaviruses. Molecular clock analysis suggests that this strain diverged from Mobala virus at least 400 years ago. Finally, this study illustrates the importance of genomics in the identification of archived viruses and expands on the diversity of African arenaviruses, because strain AnRB3214 is either a variant or a close relative of Mobala virus, and not Ippy virus

    Viral Exploration of Negative Acute Febrile Cases Observed during Chikungunya Outbreaks in Gabon

    No full text
    International audienceNon-malarial febrile illness outbreaks were documented in 2007 and 2010 in Gabon. After investigation, these outbreaks were attributed to the chikungunya and dengue viruses (CHIKV and DENV). However, for more than half of the samples analyzed, the causative agent was not identified. Given the geographical and ecological position of Gabon, where there is a great animal and microbial diversity, the circulation of other emerging viruses was suspected in these samples lacking aetiology. A total of 436 undiagnosed samples, collected between 2007 and 2013, and originating from 14 urban, suburban, and rural Gabonese locations were selected. These samples were used for viral isolation on newborn mice and VERO cells. In samples with signs of viral replication, cell supernatants and brain suspensions were used to extract nucleic acids and perform real-time RT-PCR targeting specific arboviruses, i.e., CHIKV, DENV, yellow fever, Rift Valley fever, and West Nile and Zika viruses. Virus isolation was conclusive for 43 samples either on newborn mice or by cell culture. Virus identification by RT-PCR led to the identification of CHIKV in 37 isolates. A total of 18 complete genomes and 19 partial sequences containing the E2 and E1 genes of CHIKV were sequenced using next-generation sequencing technology or the Sanger method. Phylogenetic analysis of the complete genomes showed that all the sequences belong to the East Central South Africa lineage. Furthermore, we identified 2 distinct clusters. The first cluster was made up of sequences from the western part of Gabon, whereas the second cluster was made up of sequences from the southern regions, reflecting the way CHIKV spread across the country following its initial introduction in 2007. Similar results were obtained when analyzing the CHIKV genes of the E2 and E1 structural proteins. Moreover, study of the mutations found in the E2 and E1 structural proteins revealed the presence of several mutations that facilitate the adaptation to the Aedes albopictus mosquito, such as E2 I211T and E1 A226V, in all the Gabonese CHIKV strains. Finally, sequencing of 6 additional viral isolates failed to lead to any conclusive identification
    corecore