7,744 research outputs found
Axigluons cannot explain the observed top quark forward-backward asymmetry
We study an SU(3)^2 axigluon model introduced by Frampton, Shu, and Wang to
explain the recent Fermilab Tevatron observation of a significant positive
enhancement in the top quark forward-backward asymmetry relative to standard
model predictions. First, we demonstrate that data on neutral B_d-meson mixing
excludes the region of model parameter space where the top asymmetry is
predicted to be the largest. Keeping the gauge couplings below the critical
value that would lead to fermion condensation imposes further limits at large
axigluon mass, while precision electroweak constraints on the model are
relatively mild. Furthermore, by considering an extension to an SU(3)^3 color
group, we demonstrate that embedding the model in an extra-dimensional
framework can only dilute the axigluon effect on the forward-backward
asymmetry. We conclude that axigluon models are unlikely to be the source of
the observed top quark asymmetry.Comment: 12 pages, 7 eps figures included. Minor changes to conform with
published versio
Benchmarks of Generalized Hydrodynamics for 1D Bose Gases
Generalized hydrodynamics (GHD) is a recent theoretical approach that is
becoming a go-to tool for characterizing out-of-equilibrium phenomena in
integrable and near-integrable quantum many-body systems. Here, we benchmark
its performance against an array of alternative theoretical methods, for an
interacting one-dimensional Bose gas described by the Lieb-Liniger model. In
particular, we study the evolution of both a localized density bump and dip,
along with a quantum Newton's cradle setup, for various interaction strengths
and initial equilibrium temperatures. We find that GHD generally performs very
well at sufficiently high temperatures or strong interactions. For low
temperatures and weak interactions, we highlight situations where GHD, while
not capturing interference phenomena on short lengthscales, can describe a
coarse-grained behaviour based on convolution averaging that mimics finite
imaging resolution in ultracold atom experiments. In a quantum Newton's cradle
setup based on a double-well to single-well trap quench, we find that GHD with
diffusive corrections demonstrates excellent agreement with the predictions of
a classical field approach.Comment: 8 pages, 4 figures, plus 6 pages of Supplemental Materia
Single-shot single-gate RF spin readout in silicon
For solid-state spin qubits, single-gate RF readout can help minimise the
number of gates required for scale-up to many qubits since the readout sensor
can integrate into the existing gates required to manipulate the qubits
(Veldhorst 2017, Pakkiam 2018). However, a key requirement for a scalable
quantum computer is that we must be capable of resolving the qubit state within
single-shot, that is, a single measurement (DiVincenzo 2000). Here we
demonstrate single-gate, single-shot readout of a singlet-triplet spin state in
silicon, with an average readout fidelity of at a
measurement bandwidth. We use this technique to measure a triplet to
singlet relaxation time of in precision donor quantum
dots in silicon. We also show that the use of RF readout does not impact the
maximum readout time at zero detuning limited by the to decay,
which remained at approximately . This establishes single-gate
sensing as a viable readout method for spin qubits
Non-perturbative saddle point for the effective action of disordered and interacting electrons in 2D
We find a non-perturbative saddle-point solution for the non-linear sigma
model proposed by Finkelstein for interacting and disordered electronic
systems. Spin rotation symmetry, present in the original saddle point solution,
is spontaneously broken at one-loop, as in the Coleman-Weinberg mechanism. The
new solution is singular in both the disorder and triplet interaction
strengths, and it also explicitly demonstrates that a non-trivial ferromagnetic
state appears in a theory where the disorder average is carried out from the
outset.Comment: 4 pages, 1 figur
Optical Linear Polarization of Late M- and L-Type Dwarfs
(Abridged). We report on the linear polarimetric observations in the Johnson
I filter of 44 M6-L7.5 ultracool dwarfs (2800-1400 K). Eleven (10 L and 1 M)
dwarfs appear to have significant linear polarization (P = 0.2-2.5%). We have
compared the M- and L-dwarf populations finding evidence for a larger frequency
of high I-band polarization in the coolest objects, supporting the presence of
significant amounts of dust in L-dwarfs. The probable polarizing mechanism is
related to the presence of heterogeneous dust clouds nonuniformly distributed
across the visible photospheres and the asymmetric shape of the objects. In
some young ultracool dwarfs, surrounding dusty disks may also yield
polarization. For polarimetric detections, a trend for slightly larger
polarization from L0 to L6.5 may be present in our data, suggesting changes in
the distribution of the grain properties, vertical height of the clouds,
metallicity, age, and rotation speed. One of our targets is the peculiar brown
dwarf (BD) 2MASS J2244+20 (L6.5), which shows the largest I-band polarization
degree. Its origin may lie in a surrounding dusty disk or rather large
photospheric dust grains. The M7 young BD CFHT-BD-Tau 4 and the L3.5 field
dwarf 2MASS J0036+18 were also observed in the Johnson R filter. Our data
support the presence of a circum(sub)stellar disk around the young accreting
BD. Our data also support a grain growth in the submicron regime in the visible
photosphere of J0036+18 (1900 K). The polarimetric data do not obviously
correlate with activity or projected rotational velocity. Three polarized
early- to mid-L dwarfs display I-band light curves with amplitudes below 10
mmag.Comment: Accepted for publication in ApJ (March 2005), 35 pages, 5 figure
Direct Observation of a Fractional Charge
We performed measurements of Quantum Shot Noise in order to determine the
quasiparticle charge in the Fractional Quantum Hall regime. The noise is
generated by a current flow through a partially transmitting Quantum Point
Contact in a 2DEG. The noise is directly proportional to the charge of the
quasiparticles, thus allowing direct determination of the charge. We measured
Quantum Shot Noise at a filling factor of 1/3 and found that the charge is e/3;
as predicted by Laughlin.Comment: 3 pages, PostScript, 4 figures. Submitted to Natur
Evolution of the bilayer nu = 1 quantum Hall state under charge imbalance
We use high-mobility bilayer hole systems with negligible tunneling to
examine how the bilayer nu = 1 quantum Hall state evolves as charge is
transferred from one layer to the other at constant total density. We map
bilayer nu = 1 state stability versus imbalance for five total densities
spanning the range from strongly interlayer coherent to incoherent. We observe
competition between single-layer correlations and interlayer coherence. Most
significantly, we find that bilayer systems that are incoherent at balance can
develop spontaneous interlayer coherence with imbalance, in agreement with
recent theoretical predictions.Comment: 4 pages, 4 figure
- …