26 research outputs found

    Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer

    Get PDF
    Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (T(H)17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (T-reg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby

    On Top of the Alveolar Epithelium: Surfactant and the Glycocalyx

    Get PDF
    Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research

    Selenium and Copper as Biomarkers for Pulmonary Arterial Hypertension in Systemic Sclerosis

    Get PDF
    Circulating selenoprotein P (SELENOP) constitutes an established biomarker of Se status. SELENOP concentrations are reduced in inflammation and severe disease. Recently, elevated SELENOP levels have been suggested as diagnostic marker and therapeutic target in pulmonary arterial hypertension (PAH). We decided to re-evaluate this hypothesis. A group of healthy controls (n = 30) was compared with patients suffering from systemic sclerosis (SSc, n = 66), one third with SSc-related PAH. Serum was analysed for trace elements and protein biomarkers, namely SELENOP, glutathione peroxidase 3 (GPx3) and ceruloplasmin (CP). Compared to controls, patients with SSc-related PAH displayed reduced serum Se (91 ± 2 vs. 68 ± 2 µg/L) and SELENOP concentrations (3.7 ± 0.8 vs. 2.7 ± 0.9 mg/L), along with lower GPx3 activity (278 ± 40 vs. 231 ± 54 U/L). All three biomarkers of Se status were particularly low in patients with skin involvement. Serum Cu was not different between the groups, but patients with SSc-related PAH showed elevated ratios of Cu/Se and CP/SELENOP as compared to controls. Our data indicate that patients with SSc-related PAH are characterized by reduced Se status in combination with elevated CP, in line with other inflammatory diseases. Further analyses are needed to verify the diagnostic value of these TE-related biomarkers in PAH

    Autoimmunity to Sphingosine-1-Phosphate-Receptors in Systemic Sclerosis and Pulmonary Arterial Hypertension

    Get PDF
    Context: Pulmonary arterial hypertension (PAH) is a frequent extracutaneous manifestation of systemic sclerosis (SSc). PAH is characterized by increased vasomotor tone, progressive remodeling of pulmonary arteries and arterioles, consequentially increased pulmonary vascular resistance, right heart hypertrophy, and eventually right ventricular failure. Autoimmunity against G-protein coupled receptors (GPCRs) has been implicated in the development of SSc-associated PAH. Sphingosine-1-phosphate (S1P) receptors (S1PR) present a potential, yet so far untested antigen for PAH autoimmunity, given the documented role of S1P/S1PR signaling in PAH pathogenesis. Objective: We hypothesized that S1P receptors (S1PR) may constitute autoantigens in human patients, and that the prevalence of autoantibodies (aAb) to S1PR1, S1PR2 and S1PR3 is elevated in SSc patients and associated with PAH. Methods: For this exploratory study, serum samples from 158 SSc patients, 58 of whom with PAH, along with 333 healthy control subjects were screened for S1PR-aAb. S1PR1-3 were expressed as fusion proteins with luciferase in human embryonic kidney cells and used to establish novel in-vitro assays for detecting and quantifying S1PR-aAb. The fusion proteins were incubated with serum samples, the aAb-S1PR complexes formed were precipitated by protein-A, washed and tested for luciferase activity. Commercial anti-S1PR-antibodies were used to verify specificity of the assays. Results: All three assays showed dose-dependent signal intensities when tested with S1PR-subtype specific commercial antibodies. Natural aAb to each S1PR were detected in healthy controls with a prevalence of <10% each, i.e., 2.7% for S1PR1-aAb, 3.6% for S1PR2-aAb, and 8.3% for S1PR3. The respective prevalence was higher in the cohort of SSc patients without PAH, with 17.1% for S1PR1-aAb, 19.0% for S1PR2-aAb, and 21.5% for S1PR3. In the subgroup of SSc patients with PAH, prevalence of aAb to S1PR2 and S1PR3 was further elevated to 25.9% for S1PR2-aAb, and 27.6% for S1PR3. Notably, the majority of patients with positive S1PR2-aAb (60.7%) or S1PR3-aAb (71.9%) displayed interstitial lung disease. Conclusion: S1PR1-3 can constitute autoantigens in humans, particularly in SSC patients with PAH. The potential pathophysiological significance for the etiology of the disease is currently unknown, but the elevated prevalence of S1PR2-aAb and S1PR3-aAb in SSC patients with PAH merits further mechanistic investigations

    Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1

    Full text link
    Osteoclasts have a unique bone-destroying capacity, playing key roles in steady-state bone remodeling and arthritic bone erosion. Whether the osteoclasts in these different tissue settings arise from the same precursor states of monocytoid cells is presently unknown. Here, we show that osteoclasts in pannus originate exclusively from circulating bone marrow-derived cells and not from locally resident macrophages. We identify murine CX3CR1hiLy6CintF4/80+I-A+/I-E+ macrophages (termed here arthritis-associated osteoclastogenic macrophages (AtoMs)) as the osteoclast precursor-containing population in the inflamed synovium, comprising a subset distinct from conventional osteoclast precursors in homeostatic bone remodeling. Tamoxifen-inducible Foxm1 deletion suppressed the capacity of AtoMs to differentiate into osteoclasts in vitro and in vivo. Furthermore, synovial samples from human patients with rheumatoid arthritis contained CX3CR1+HLA-DRhiCD11c+CD80−CD86+ cells that corresponded to mouse AtoMs, and human osteoclastogenesis was inhibited by the FoxM1 inhibitor thiostrepton, constituting a potential target for rheumatoid arthritis treatment.Hasegawa T., Kikuta J., Sudo T., et al. Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1. Nature Immunology 20, 1631 (2019); https://doi.org/10.1038/s41590-019-0526-7

    High-endothelial cell-derived s1p regulates dendritic cell localization and vascular integrity in the lymph node

    Get PDF
    While the sphingosine-1-phosphate (S1P)/sphingosine-1-phosphate receptor-1 (S1PR1) axis is critically important for lymphocyte egress from lymphoid organs, S1PR1-activation also occurs in vascular endothelial cells (ECs), including those of the high-endothelial venules (HEVs) that mediate lymphocyte immigration into lymph nodes (LNs). To understand the functional significance of the S1P/S1PR1-Gi axis in HEVs, we generated Lyve1;Spns2Δ/Δ conditional knockout mice for the S1P-transporter Spinster-homologue-2 (SPNS2), as HEVs express LYVE1 during development. In these mice HEVs appeared apoptotic and were severely impaired in function, morphology and size; leading to markedly hypotrophic peripheral LNs. Dendritic cells (DCs) were unable to interact with HEVs, which was also observed in Cdh5CRE-ERT2;S1pr1Δ/Δ mice and wildtype mice treated with S1PR1-antagonists. Wildtype HEVs treated with S1PR1-antagonists in vitro and Lyve1-deficient HEVs show severely reduced release of the DC-chemoattractant CCL21 in vivo. Together, our results reveal that EC-derived S1P warrants HEV-integrity through autocrine control of S1PR1-Gi signaling, and facilitates concomitant HEV-DC interactions.Simmons S., Sasaki N., Umemoto E., et al. High-endothelial cell-derived s1p regulates dendritic cell localization and vascular integrity in the lymph node. eLife 8, e41239 (2019); https://doi.org/10.7554/eLife.41239

    Sphingolipids in Atherosclerosis: Chimeras in Structure and Function

    Get PDF
    Atherosclerosis&mdash;a systemic inflammatory disease&mdash;is the number one cause of mortality and morbidity worldwide. As such, the prevention of disease progression is of global interest in order to reduce annual deaths at a significant scale. Atherosclerosis is characterized by plaque formation in the arteries, resulting in vascular events such as ischemic stroke or myocardial infarction. A better understanding of the underlying pathophysiological processes at the cellular and molecular level is indispensable to identify novel therapeutic targets that may alleviate disease initiation or progression. Sphingolipids&mdash;a lipid class named after the chimeric creature sphinx&mdash;are considered to play a critical and, metaphorically, equally chimeric regulatory role in atherogenesis. Previous studies identified six common sphingolipids, namely dihydroceramide (DhCer), ceramide (Cer), sphingosine-1-phosphate (S1P), sphingomyelin (SM), lactosylceramide (LacCer), and glucosylceramide (GluCer) in carotid plaques, and demonstrated their potential as inducers of plaque inflammation. In this review, we point out their specific roles in atherosclerosis by focusing on different cell types, carrier molecules, enzymes, and receptors involved in atherogenesis. Whereas we assume mainly atheroprotective effects for GluCer and LacCer, the sphingolipids DhCer, Cer, SM and S1P mediate chimeric functions. Initial studies demonstrate the successful use of interventions in the sphingolipid pathway to prevent atherosclerosis. However, as atherosclerosis is a multifactorial disease with a variety of underlying cellular processes, it is imperative for future research to emphasize the circumstances in which sphingolipids exert protective or progressive functions and to evaluate their therapeutic benefits in a spatiotemporal manner

    Extracellular vesicles as regulators of kidney function and disease

    No full text
    Abstract Extracellular vesicles (EVs) are small, lipid bilayer-delimited particles of cellular origin that recently gained increasing attention for their potential use as diagnostic biomarkers, and beyond that for their role in intercellular communication and as regulators of homeostatic and disease processes. In acute kidney injury (AKI) and chronic kidney disease (CKD), the potential use of EVs as diagnostic and prognostic markers has been evaluated in a series of clinical studies and contributions to pathophysiologic pathways have been investigated in experimental models. While EV concentrations in biofluids could not distinguish renal patients from healthy subjects or determine disease progression, specific EV subpopulations have been identified that may provide useful diagnostic and prognostic tools in AKI. Specific EV subpopulations are also associated with clinical complications in sepsis-induced AKI and in CKD. Beyond their role as biomarkers, pathophysiologic involvement of EVs has been shown in hemolytic uremic syndrome- and sepsis-induced AKI as well as in cardiovascular complications of CKD. On the other hand, some endogenously formed or therapeutically applied EVs demonstrate protective effects pointing toward their usefulness as emerging treatment strategy in kidney disease

    Bacterial Membrane Vesicles in Pneumonia: From Mediators of Virulence to Innovative Vaccine Candidates

    Get PDF
    Pneumonia due to respiratory infection with most prominently bacteria, but also viruses, fungi, or parasites is the leading cause of death worldwide among all infectious disease in both adults and infants. The introduction of modern antibiotic treatment regimens and vaccine strategies has helped to lower the burden of bacterial pneumonia, yet due to the unavailability or refusal of vaccines and antimicrobials in parts of the global population, the rise of multidrug resistant pathogens, and high fatality rates even in patients treated with appropriate antibiotics pneumonia remains a global threat. As such, a better understanding of pathogen virulence on the one, and the development of innovative vaccine strategies on the other hand are once again in dire need in the perennial fight of men against microbes. Recent data show that the secretome of bacteria consists not only of soluble mediators of virulence but also to a significant proportion of extracellular vesicles-lipid bilayer-delimited particles that form integral mediators of intercellular communication. Extracellular vesicles are released from cells of all kinds of organisms, including both Gram-negative and Gram-positive bacteria in which case they are commonly termed outer membrane vesicles (OMVs) and membrane vesicles (MVs), respectively. (O)MVs can trigger inflammatory responses to specific pathogens including S. pneumonia, P. aeruginosa, and L. pneumophila and as such, mediate bacterial virulence in pneumonia by challenging the host respiratory epithelium and cellular and humoral immunity. In parallel, however, (O)MVs have recently emerged as auspicious vaccine candidates due to their natural antigenicity and favorable biochemical properties. First studies highlight the efficacy of such vaccines in animal models exposed to (O)MVs from B. pertussis, S. pneumoniae, A. baumannii, and K. pneumoniae. An advanced and balanced recognition of both the detrimental effects of (O)MVs and their immunogenic potential could pave the way to novel treatment strategies in pneumonia and effective preventive approaches
    corecore