12,671 research outputs found

    General solution of an exact correlation function factorization in conformal field theory

    Full text link
    We discuss a correlation function factorization, which relates a three-point function to the square root of three two-point functions. This factorization is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. The correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with operators at two arbitrary points on the real axis, and a third arbitrary point on either the real axis or in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones, and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover a correlation function which factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin-Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c < 1) and do not seem to have a physical realization.Comment: 7 pages, 1 figure, v2 minor revision

    Factorization of correlations in two-dimensional percolation on the plane and torus

    Full text link
    Recently, Delfino and Viti have examined the factorization of the three-point density correlation function P_3 at the percolation point in terms of the two-point density correlation functions P_2. According to conformal invariance, this factorization is exact on the infinite plane, such that the ratio R(z_1, z_2, z_3) = P_3(z_1, z_2, z_3) [P_2(z_1, z_2) P_2(z_1, z_3) P_2(z_2, z_3)]^{1/2} is not only universal but also a constant, independent of the z_i, and in fact an operator product expansion (OPE) coefficient. Delfino and Viti analytically calculate its value (1.022013...) for percolation, in agreement with the numerical value 1.022 found previously in a study of R on the conformally equivalent cylinder. In this paper we confirm the factorization on the plane numerically using periodic lattices (tori) of very large size, which locally approximate a plane. We also investigate the general behavior of R on the torus, and find a minimum value of R approx. 1.0132 when the three points are maximally separated. In addition, we present a simplified expression for R on the plane as a function of the SLE parameter kappa.Comment: Small corrections (final version). In press, J. Phys.

    Percolation Crossing Formulas and Conformal Field Theory

    Full text link
    Using conformal field theory, we derive several new crossing formulas at the two-dimensional percolation point. High-precision simulation confirms these results. Integrating them gives a unified derivation of Cardy's formula for the horizontal crossing probability Πh(r)\Pi_h(r), Watts' formula for the horizontal-vertical crossing probability Πhv(r)\Pi_{hv}(r), and Cardy's formula for the expected number of clusters crossing horizontally Nh(r)\mathcal{N}_h(r). The main step in our approach implies the identification of the derivative of one primary operator with another. We present operator identities that support this idea and suggest the presence of additional symmetry in c=0c=0 conformal field theories.Comment: 12 pages, 5 figures. Numerics improved; minor correction

    Higgsless Models: Lessons from Deconstruction

    Get PDF
    This talk reviews recent progress in Higgsless models of electroweak symmetry breaking, and summarizes relevant points of model-building and phenomenology.Comment: 12 pages, 2 figures, Presented at the X Mexican Workshop on Particles and Field

    Clustering Memes in Social Media

    Full text link
    The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'13), 201

    Twist operator correlation functions in O(n) loop models

    Full text link
    Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n=0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c=0. In this limit the twist operator plays the role of a zero weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null-states, we derive a new explicit result for the probabilities that an SLE_{8/3} wind in various ways about two points in the upper half plane, e.g. that the SLE passes to the left of both points. The collection of c=0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We provide evidence that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules.Comment: 18 pages, 8 figure
    • …
    corecore