4,686 research outputs found
Frequency-Tunable Josephson Junction Resonator for Quantum Computing
We have fabricated and measured a high-Q Josephson junction resonator with a
tunable resonance frequency. A dc magnetic flux allows the resonance frequency
to be changed by over 10 %. Weak coupling to the environment allows a quality
factor of 7000 when on average less than one photon is stored in the
resonator. At large photon numbers, the nonlinearity of the Josephson junction
creates two stable oscillation states. This resonator can be used as a tool for
investigating the quality of Josephson junctions in qubits below the single
photon limit, and can be used as a microwave qubit readout at high photon
numbers.Comment: 3 pages, 5 figure
Quantum nondemolition measurement of a nonclassical state of a massive object
While quantum mechanics exquisitely describes the behavior of microscopic
systems, one ongoing challenge is to explore its applicability to systems of
larger size and mass. Unfortunately, quantum states of increasingly macroscopic
objects are more easily corrupted by unintentional measurements from the
classical environment. Additionally, even the intentional measurements from the
observer can further perturb the system. In optomechanics, coherent light
fields serve as the intermediary between the fragile mechanical states and our
inherently classical world by exerting radiation pressure forces and extracting
mechanical information. Here we engineer a microwave cavity optomechanical
system to stabilize a nonclassical steady-state of motion while independently,
continuously, and nondestructively monitoring it. By coupling the motion of an
aluminum membrane to two microwave cavities, we separately prepare and measure
a squeezed state of motion. We demonstrate a quantum nondemolition (QND)
measurement of sub-vacuum mechanical quadrature fluctuations. The techniques
developed here have direct applications in the areas of quantum-enhanced
sensing and quantum information processing, and could be further extended to
more complex quantum states.Comment: 9 pages, 6 figure
The turbulent wake of a monopile foundation
publisher: Elsevier articletitle: The turbulent wake of a monopile foundation journaltitle: Renewable Energy articlelink: http://dx.doi.org/10.1016/j.renene.2016.02.050 content_type: article copyright: Copyright © 2016 Elsevier Ltd. All rights reserved
A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland
Continuous high-frequency in situ measurements of a range of non-methane hydrocarbons have been made at Mace Head since January 2005. Mace Head is a background Northern Hemispheric site situated on the eastern edge of the Atlantic. Five year measurements (2005–2009) of six C<sub>2</sub>–C<sub>5</sub> non-methane hydrocarbons have been separated into baseline Northern Hemispheric and European polluted air masses, among other sectors. Seasonal cycles in baseline Northern Hemispheric air masses and European polluted air masses arriving at Mace Head have been studied. Baseline air masses show a broad summer minima between June and September for shorter lived species, longer lived species show summer minima in July/August. All species displayed a winter maxima in February. European air masses showed baseline elevated mole fractions for all non-methane hydrocarbons. Largest elevations (of up to 360 ppt for ethane maxima) from baseline data were observed in winter maxima, with smaller elevations observed during the summer. Analysis of temporal trends using the Mann-Kendall test showed small (<6 % yr<sup>&minus;1</sup>) but statistically significant decreases in the butanes and <i>i</i>-pentane between 2005 and 2009 in European air. No significant trends were found for any species in baseline air
Demonstration of efficient nonreciprocity in a microwave optomechanical circuit
The ability to engineer nonreciprocal interactions is an essential tool in
modern communication technology as well as a powerful resource for building
quantum networks. Aside from large reverse isolation, a nonreciprocal device
suitable for applications must also have high efficiency (low insertion loss)
and low output noise. Recent theoretical and experimental studies have shown
that nonreciprocal behavior can be achieved in optomechanical systems, but
performance in these last two attributes has been limited. Here we demonstrate
an efficient, frequency-converting microwave isolator based on the
optomechanical interactions between electromagnetic fields and a mechanically
compliant vacuum gap capacitor. We achieve simultaneous reverse isolation of
more than 20 dB and insertion loss less than 1.5 dB over a bandwidth of 5 kHz.
We characterize the nonreciprocal noise performance of the device, observing
that the residual thermal noise from the mechanical environments is routed
solely to the input of the isolator. Our measurements show quantitative
agreement with a general coupled-mode theory. Unlike conventional isolators and
circulators, these compact nonreciprocal devices do not require a static
magnetic field, and they allow for dynamic control of the direction of
isolation. With these advantages, similar devices could enable programmable,
high-efficiency connections between disparate nodes of quantum networks, even
efficiently bridging the microwave and optical domains.Comment: 9 pages, 6 figure
- …
