1,011 research outputs found

    Gas Dynamics in the Barred Seyfert Galaxy NGC4151 - II. High Resolution HI Study

    Full text link
    We present sensitive, high angular resolution (6" x 5") 21-cm observations of the neutral hydrogen in the nearby barred Seyfert galaxy, NGC4151. These HI observations, obtained using the VLA in B-configuration, are the highest resolution to date of this galaxy, and reveal hitherto unprecedented detail in the distribution and kinematics of the HI on sub-kiloparsec scales. A complete analysis and discussion of the HI data are presented and the global properties of the galaxy are related to the bar dynamics presented in Paper I.Comment: 13 pages including 9 figures and 3 tables; accepted for publication in MNRA

    Velocities from Cross-Correlation: A Guide for Self-Improvement

    Full text link
    The measurement of Doppler velocity shifts in spectra is a ubiquitous theme in astronomy, usually handled by computing the cross-correlation of the signals, and finding the location of its maximum. This paper addresses the problem of the determination of wavelength or velocity shifts among multiple spectra of the same, or very similar, objects. We implement the classical cross-correlation method and experiment with several simple models to determine the location of the maximum of the cross-correlation function. We propose a new technique, 'self-improvement', to refine the derived solutions by requiring that the relative velocity for any given pair of spectra is consistent with all others. By exploiting all available information, spectroscopic surveys involving large numbers of similar objects may improve their precision significantly. As an example, we simulate the analysis of a survey of G-type stars with the SDSS instrumentation. Applying 'self-improvement' refines relative radial velocities by more than 50% at low signal-to-noise ratio. The concept is equally applicable to the problem of combining a series of spectroscopic observations of the same object, each with a different Doppler velocity or instrument-related offset, into a single spectrum with an enhanced signal-to-noise ratio.Comment: 7 pages, 3 figures, uses emulateapj.cls; to appear in the Astronomical Journal; see http://hebe.as.utexas.edu/stools/ to obtain the companion softwar

    Simulation study of magnetic holes at the Earth's collisionless bow shock

    Get PDF
    Recent observations by the Cluster and Double Star spacecraft at the Earth's bow shock have revealed localized magnetic field and density holes in the solar wind plasma. These structures are characterized by a local depletion of the magnetic field and the plasma density, and by a strong increase of the plasma temperature inside the magnetic and density cavities. Our objective here is to report results of a hybrid-Vlasov simulations of ion-Larmor-radius sized plasma density cavities with parameters that are representative of the high-beta solar wind plasma at the Earth's bow shock. We observe the asymmetric self-steepening and shock-formation of the cavity, and a strong localized temperature increase (by a factor of 5–7) of the plasma due to reflections and shock surfing of the ions against the collisionless shock. Temperature maxima are correlated with density minima, in agreement with Cluster observations. For oblique incidence of the solar wind, we observe efficient acceleration of ions along the magnetic field lines by the shock drift acceleration process

    Extended Emission Line Gas in Radio Galaxies - PKS0349-27

    Get PDF
    PKS0349-27 is a classical FRII radio galaxy with an AGN host which has a spectacular, spiral-like structure in its extended emission line gas (EELG). We have measured the velocity field in this gas and find that it splits into 2 cloud groups separated by radial velocities which at some points approach 400 km/s Measurements of the diagnostic emission line ratios [OIII]5007/H-beta, [SII]6716+6731/H-alpha, and [NII]6583/H-alpha in these clouds show no evidence for the type of HII region emission associated with starburst activity in either velocity system. The measured emission line ratios are similar to those found in the nuclei of narrow-line radio galaxies, but the extended ionization/excitation cannot be produced by continuum emission from the active nucleus alone. We present arguments which suggest that the velocity disturbances seen in the EELG are most likely the result of a galaxy-galaxy collision or merger but cannot completely rule out the possibility that the gas has been disrupted by the passage of a radio jet.Comment: 12 pages, 3 fig pages, to appear in the Astrophys.

    Macrophages Are Necessary for Epimorphic Regeneration in African Spiny Mice

    Get PDF
    How the immune system affects tissue regeneration is not well understood. In this study, we used an emerging mammalian model of epimorphic regeneration, the African spiny mouse, to examine cell-based inflammation and tested the hypothesis that macrophages are necessary for regeneration. By directly comparing inflammatory cell activation in a 4 mm ear injury during regeneration (Acomys cahirinus) and scarring (Mus musculus), we found that both species exhibited an acute inflammatory response, with scarring characterized by stronger myeloperoxidase activity. In contrast, ROS production was stronger and more persistent during regeneration. By depleting macrophages during injury, we demonstrate a functional requirement for these cells to stimulate regeneration. Importantly, the spatial distribution of activated macrophage subtypes was unique during regeneration with pro-inflammatory macrophages failing to infiltrate the regeneration blastema. Together, our results demonstrate an essential role for inflammatory cells to regulate a regenerative response

    A Study of the Direct-Fitting Method for Measurement of Galaxy Velocity Dispersions

    Get PDF
    We have measured the central stellar velocity dispersions of 33 nearby spiral and elliptical galaxies, using a straightforward template-fitting algorithm operating in the pixel domain. The spectra, obtained with the Double Spectrograph at Palomar Observatory, cover both the Ca triplet and the Mg b region, and we present a comparison of the velocity dispersion measurements from these two spectral regions. Model fits to the Ca triplet region generally yield good results with little sensitivity to the choice of template star. In contrast, the Mg b region is more sensitive to template mismatch and to details of the fitting procedure such as the order of a polynomial used to match the continuum shape of the template to the object. As a consequence of the correlation of the [Mg/Fe] ratio with velocity dispersion, it is difficult to obtain a satisfactory model fit to the Mg b lines and the surrounding Fe blends simultaneously, particularly for giant elliptical galaxies with large velocity dispersions. We demonstrate that if the metallicities of the galaxy and template star are not well matched, then direct template-fitting results are improved if the Mg b lines themselves are excluded from the fit and the velocity dispersion is determined from the surrounding weaker lines.Comment: 14 pages. To appear in A

    Magnetic Properties of a Bose-Einstein Condensate

    Full text link
    Three hyperfine states of Bose-condensed sodium atoms, recently optically trapped, can be described as a spin-1 Bose gas. We study the behaviour of this system in a magnetic field, and construct the phase diagram, where the temperature of the Bose condensation TBECT_{BEC} increases with magnetic field. In particular the system is ferromagnetic below TBECT_{BEC} and the magnetization is proportional to the condensate fraction in a vanishing magnetic field. Second derivatives of the magnetisation with regard to temperature or magnetic field are discontinuous along the phase boundary.Comment: 5 pages, 5 figures included, to appear in Phys. Rev.

    Integral Field Spectroscopy of 23 Spiral Bulges

    Get PDF
    We have obtained Integral Field Spectroscopy for 23 spiral bulges using INTEGRAL on the William Herschel Telescope and SPIRAL on the Anglo-Australian Telescope. This is the first 2D survey directed solely at the bulges of spiral galaxies. Eleven galaxies of the sample do not have previous measurements of the stellar velocity dispersion (sigma*). These data are designed to complement our Space Telescope Imaging Spectrograph program for estimating black hole masses in the range 10^6-10^8M_sun using gas kinematics from nucleated disks. These observations will serve to derive the stellar dynamical bulge properties using the traditional Mgb and CaII triplets. We use both Cross Correlation and Maximum Penalized Likelihood to determine projected sigma* in these systems and present radial velocity fields, major axis rotation curves, curves of growth and sigma* fields. Using the Cross Correlation to extract the low order 2D stellar dynamics we generally see coherent radial rotation and irregular velocity dispersion fields suggesting that sigma* is a non-trivial parameter to estimate.Comment: 11 pages, 30 figures, accepted for publication in ApJ

    Three-dimensional Josephson-junction arrays in the quantum regime

    Full text link
    We study the quantum phase transition properties of a three-dimensional periodic array of Josephson junctions with charging energy that includes both the self and mutual junction capacitances. We use the phase fluctuation algebra between number and phase operators, given by the Euclidean group E_2, and we effectively map the problem onto a solvable quantum generalization of the spherical model. We obtain a phase diagram as a function of temperature, Josephson coupling and charging energy. We also analyze the corresponding fluctuation conductivity and its universal scaling form in the vicinity of the zero-temperature quantum critical point.Comment: 9 pages, LATEX, three PostScript figures. Submitted to Phys. Rev. Let
    • …
    corecore