11 research outputs found

    Immune-Complex Mimics as a Molecular Platform for Adjuvant-Free Vaccine Delivery

    Get PDF
    Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role

    FcεRI-mediated antigen endocytosis turns interferon-γ-treated mouse mast cells from inefficient into potent antigen-presenting cells

    No full text
    Previous studies in our laboratory have shown that bone-marrow-derived mast cells (BMMC) could present immunogenic peptides, from soluble antigens endocytosed through fluid phase, only if they were subjected to a 48-hr treatment with interleukin-4 (IL-4) and granulocyte–macrophage colony-stimulating factor (GM-CSF). In contrast to GM-CSF, interferon-γ (IFN-γ) which highly upregulates major histocompatibility complex (MHC) class II expression, completely inhibits the generation of immunogenic peptides. We have used this model to study the role of FcεRI-mediated antigen internalization in the regulation of the antigen-presenting function of IFN-γ-treated mast cells. Here, we report that FcεRI can reverse the IFN-γ-treated mast cells from inefficient to highly efficient antigen-presenting cells. Inhibition of the antigen presenting capacity by piceatannol, a protein tyrosine kinase (PTK) syk inhibitor, indicates that this is an active process resulting from immunoglobulin E (IgE)–antigen–FcεRI engagement which involves tyrosines found in the immunoreceptor tyrosine-based activation motif (ITAM) embedded in the cytoplasmic tail of the FcεRI β and γ chains. Antigen-presenting function was also shown to require the activation of phosphatidyl inositol 3 (PI3) kinase, downstream of PTK syk phosphorylation, since this activity was completely blocked by wortmannin, a PI3 kinase inhibitor. These data suggest that signalling generated by FcεRI provides mast cells with IgE-mediated enhanced antigen presentation to T cells and emphasize a so far unknown immunoregulatory mast-cell function that might take place in inflammatory sites

    Reconstruction of a pathway of antigen processing and class II MHC peptide capture

    No full text
    Endocytosed antigens are proteolytically processed and small amounts of peptides captured by class II MHC molecules. The details of antigen proteolysis, peptide capture and how destruction of T-cell epitopes is avoided are incompletely understood. Using the tetanus toxin antigen, we show that the introduction of 3–6 cleavage sites is sufficient to trigger a partially unfolded conformation able to bind to class II MHC molecules. The known locations of T-cell epitopes and protease cleavage sites predict that large domains of processed antigen (8–35 kDa) are captured under these conditions. Remarkably, when antigen is bound to the B-cell antigen receptor (BCR), processing can trigger a concerted ‘hand-over' reaction whereby BCR-associated processed antigen is captured by neighbouring class II MHC molecules. Early capture of minimally processed antigen and confinement of the processing and class II MHC loading reaction to the membrane plane may improve the likelihood of T-cell epitope survival in the class II MHC pathway and may help explain the reciprocal relationships observed between B- and T-cell epitopes in many protein antigens and autoantigens

    Autoimmune Diabetes: The Role of T Cells, MHC Molecules and Autoantigens

    No full text
    corecore