3 research outputs found

    Data_Sheet_1_Secular trends in the mortality of gastrointestinal cancers across China, Japan, the US, and India: An age-period-cohort, Joinpoint analyses, and Holt forecasts.docx

    No full text
    BackgroundColon cancer, esophageal cancer, and stomach cancer are the common causes of morbidity and mortality in China, Japan, the US., and India. The current study aims to assess and compare secular trends of the mortality of gastrointestinal cancers during the period, 1990–2017 in age-specific, time period, and birth cohort effects.MethodWe used the Joinpoint model to collect age-standardized mortality rates (ASMRs) for four countries. We designed an age-period-cohort (APC) analysis to estimate the independent effects on the mortality of three types of cancers.ResultThe Joinpoint model shows that in addition to the death rate of esophageal cancer in Japan, the ASMR of esophageal cancer and stomach cancer in other countries declined rapidly. The APC analysis presented a similar pattern of age effect between four countries for colon cancer and stomach cancer, which increased from 20 to 89 age groups. Differently, the period effect rapidly increased for esophageal cancer and stomach cancer in the US, and the period effect in China presented a declining volatility, showing its highest value in 2007. In future, highest mortality trends are likely to occur in China.ConclusionTherefore, the obvious increase in colon cancer recommended that earlier tactics must be performed to reduce mortality from specific causes from 2018 to 2027.</p

    DataSheet_1_The role of lipid traits in mediating the effect of body mass index on serum urate.zip

    No full text
    ObjectiveTo explore whether total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglyceride (TG) are mediators in the pathway of body mass index (BMI) on serum urate and determine the proportion of the mediation effect.MethodsThis study used observational and two-sample Mendelian randomization (MR) analyses to explore the mediation effects of TC, HDL, LDL, and TG in the pathway of BMI on serum urate. We determined the size and the extent to which these lipids mediate any effect of BMI on serum urate.ResultsObservational analysis results showed that HDL and TG can partially explain the association of BMI on serum urate, and the proportion of mediation effect was 10.2% and 8.9%, respectively. MR results demonstrated that TG has a causal effect on serum urate (β = 0.22, 95% CI: 0.15, 0.29; p = 2.28×10–10.) and its proportion of mediation effect was 14.1%. TC, HDL, and LDL are not the mediators in the pathway of BMI on serum urate in MR estimates.ConclusionTo a certain extent, TG mediates the effect of BMI on serum urate, and the risk of gout may be reduced by controlling both BMI and TG.</p

    Enhanced Thermal Decomposition Properties of CL-20 through Space-Confining in Three-Dimensional Hierarchically Ordered Porous Carbon

    No full text
    High energy and low signature properties are the future trend of solid propellant development. As a new and promising oxidizer, hexanitrohexaazaisowurtzitane (CL-20) is expected to replace the conventional oxidizer ammonium perchlorate to reach above goals. However, the high pressure exponent of CL-20 hinders its application in solid propellants so that the development of effective catalysts to improve the thermal decomposition properties of CL-20 still remains challenging. Here, 3D hierarchically ordered porous carbon (3D HOPC) is presented as a catalyst for the thermal decomposition of CL-20 via synthesizing a series of nanostructured CL-20/HOPC composites. In these nanocomposites, CL-20 is homogeneously space-confined into the 3D HOPC scaffold as nanocrystals 9.2–26.5 nm in diameter. The effect of the pore textural parameters and surface modification of 3D HOPC as well as CL-20 loading amount on the thermal decomposition of CL-20 is discussed. A significant improvement of the thermal decomposition properties of CL-20 is achieved with remarkable decrease in decomposition peak temperature (from 247.0 to 174.8 °C) and activation energy (from 165.5 to 115.3 kJ/mol). The exceptional performance of 3D HOPC could be attributed to its well-connected 3D hierarchically ordered porous structure, high surface area, and the confined CL-20 nanocrystals. This work clearly demonstrates that 3D HOPC is a superior catalyst for CL-20 thermal decomposition and opens new potential for further applications of CL-20 in solid propellants
    corecore