47 research outputs found

    A red giant orbiting a black hole

    Full text link
    We report spectroscopic and photometric follow-up of a dormant black hole (BH) candidate from Gaia DR3. We show that the system, which we call Gaia BH2, contains a 1M\sim 1M_{\odot} red giant and a dark companion with mass M2=8.9±0.3MM_2 = 8.9\pm 0.3\,M_{\odot} that is very likely a BH. The orbital period, Porb=1277P_{\rm orb} = 1277 days, is much longer than that of any previously studied BH binary. Our radial velocity (RV) follow-up over a 6-month period spans most of the orbit's dynamic range in RV and is in excellent agreement with predictions of the Gaia solution. UV imaging and high-resolution optical spectra rule out all plausible luminous companions that could explain the orbit. The star is a bright (G=12.3G=12.3), slightly metal-poor ([Fe/H]=0.22\rm [Fe/H]=-0.22) low-luminosity giant (Teff=4600KT_{\rm eff}=4600\,\rm K; R=7.9RR = 7.9\,R_{\odot}; log[g/(cms2)]=2.6\log\left[g/\left({\rm cm\,s^{-2}}\right)\right] = 2.6). The binary's orbit is moderately eccentric (e=0.52e=0.52). The giant is strongly enhanced in α\alpha-elements, with [α/Fe]=+0.26\rm [\alpha/Fe] = +0.26, but the system's Galactocentric orbit is typical of the thin disk. We obtained X-ray and radio nondetections of the source near periastron, which support BH accretion models in which the net accretion rate at the horizon is much lower than the Bondi-Hoyle-Lyttleton rate. At a distance of 1.16 kpc, Gaia BH2 is the second-nearest known BH, after Gaia BH1. Its orbit -- like that of Gaia BH1 -- seems too wide to have formed through common envelope evolution. Gaia BH1 and BH2 have orbital periods at opposite edges of the Gaia DR3 sensitivity curve, perhaps hinting at a bimodal intrinsic period distribution for wide BH binaries. Dormant BH binaries like Gaia BH1 and Gaia BH2 likely significantly outnumber their close, X-ray bright cousins, but their formation pathways remain uncertain.Comment: 22 pages, 15 figures. Submitted to MNRA

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    Thermoregulatory responses of patients with extensive healed burns

    No full text

    Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy

    No full text
    Massive transfusion of blood can lead to clinical complications, including multiorgan dysfunction and even death. Such severe clinical outcomes have been associated with longer red blood cell (rbc) storage times. Collectively referred to as the rbc storage lesion, rbc storage results in multiple biochemical changes that impact intracellular processes as well as membrane and cytoskeletal properties, resulting in cellular injury in vitro. However, how the rbc storage lesion triggers pathophysiology in vivo remains poorly defined. In this study, we developed a guinea pig transfusion model with blood stored under standard blood banking conditions for 2 (new), 21 (intermediate), or 28 days (old blood). Transfusion with old but not new blood led to intravascular hemolysis, acute hypertension, vascular injury, and kidney dysfunction associated with pathophysiology driven by hemoglobin (Hb). These adverse effects were dramatically attenuated when the high-affinity Hb scavenger haptoglobin (Hp) was administered at the time of transfusion with old blood. Pathologies observed after transfusion with old blood, together with the favorable response to Hp supplementation, allowed us to define the in vivo consequences of the rbc storage lesion as storage-related posttransfusion hemolysis producing Hb-driven pathophysiology. Hb sequestration by Hp might therefore be a therapeutic modality for enhancing transfusion safety in severely ill or massively transfused patients

    A red giant orbiting a black hole

    Full text link
    ABSTRACT We report spectroscopic and photometric follow-up of a dormant black hole (BH) candidate from Gaia DR3. The system, which we call Gaia BH2, contains a ∼1 M⊙ red giant and a dark companion with mass M2=8.9±0.3MM_2 = 8.9\pm 0.3\, {\rm M}_{\odot } that is very likely a BH. The orbital period, Porb = 1277 d, is much longer than that of any previously studied BH binary. Our radial velocity (RV) follow-up over a 7-month period spans &amp;gt;90 per cent of the orbit’s RV range and is in excellent agreement with the Gaia solution. UV imaging and high-resolution optical spectra rule out plausible luminous companions that could explain the orbit. The star is a bright (G = 12.3), slightly metal-poor ([Fe/H]=0.22\rm [Fe/H]=-0.22) low-luminosity giant (Teff=4600KT_{\rm eff}=4600\, \rm K; R=7.8RR = 7.8\, R_{\odot }; log[g/(cms2)]=2.6\log \left[g/\left({\rm cm\, s^{-2}}\right)\right] = 2.6). The binary’s orbit is moderately eccentric (e = 0.52). The giant is enhanced in α-elements, with [α/Fe]=+0.26\rm [\alpha /Fe] = +0.26, but the system’s Galactocentric orbit is typical of the thin disc. We obtained X-ray and radio non-detections of the source near periastron, which support BH accretion models in which the net accretion rate at the horizon is much lower than the Bondi–Hoyle–Lyttleton rate. At a distance of 1.16 kpc, Gaia BH2 is the second-nearest known BH, after Gaia BH1. Its orbit – like that of Gaia BH1 – seems too wide to have formed through common envelope evolution. Gaia BH1 and BH2 have orbital periods at opposite edges of the Gaia DR3 sensitivity curve, perhaps hinting at a bimodal intrinsic period distribution for wide BH binaries. Dormant BH binaries like Gaia BH1 and Gaia BH2 significantly outnumber their close, X-ray bright cousins, but their formation pathways remain uncertain.</jats:p
    corecore