17 research outputs found

    Particles in raw sheep milk can modulate the inflammatory response in THP-1, a human monocyte cell line, in vitro

    Get PDF
    Background: The UK dairy sheep industry is relatively small but growing, particularly for cheese and yogurt products. Anecdotally, sheep milk (SM) may be better tolerated by humans than cows’ milk and could have environmental as well as health benefits. All milk contains sub-micron particles called extracellular vesicles (EVs) which are mainly derived from the mammary epithelium. Physiologically, milk-derived EVs are thought to aid in the development of infant immunity and the microbiome, but may also have health benefits to adult humans. The purpose of this study was to determine whether EVs could be isolated from raw sheep milk and whether they have any effect on inflammatory responses in THP-1, a human monocyte cell line, in vitro. Methods: Using sequential ultracentrifugation, vesicles of <1 µm (LEV) followed by <200 nm (sEVs) were isolated from six individual sheep during mid-lactation. RNA was extracted and microRNA analyzed by RTqPCR for sequences previously identified in cows’ milk. Human THP-1 monocytes were differentiated into macrophages and incubated with SM-derived LEVs and sEVs in the presence of pro-inflammatory LPS to measure the effects on the secretion of the chemokine CCL-2 or in the presence of DMNQ and fluorescent dihydrorhodamine-1,2,3 to measure reactive oxygen species. Results: LEVs induced an increase in ROS in both monocytes and macrophages, whilst sEVs decreased DMNQ-mediated ROS in macrophages but not monocytes. Interestingly, the LEVs did not induce CCL2 release; however, they increased LPS-induced CCL2 secretion in monocytes but not macrophages. miR26a, miR92a, miR125b, miR155 and miR223 were identified in both sEVs and LEVs by RT-qPCR and could be responsible for the modulation of ROS and CCL2 expression. Conclusions: These findings suggest that like cows’ milk, sheep milk contains EVs, and they can influence human monocyte/macrophage responses, and so is worthy of further investigation for its potential human- and non-human-animal health benefits

    Homologous and heterologous desensitization of guanylyl cyclase-B signaling in GH3 somatolactotropes

    Get PDF
    The guanylyl cyclases, GC-A and GC-B, are selective receptors for atrial and C-type natriuretic peptides (ANP and CNP, respectively). In the anterior pituitary, CNP and GC-B are major regulators of cGMP production in gonadotropes and yet mouse models of disrupted CNP and GC-B indicate a potential role in growth hormone secretion. In the current study, we investigate the molecular and pharmacological properties of the CNP/GC-B system in somatotrope lineage cells. Primary rat pituitary and GH3 somatolactotropes expressed functional GC-A and GC-B receptors that had similar EC50 properties in terms of cGMP production. Interestingly, GC-B signaling underwent rapid homologous desensitization in a protein phosphatase 2A (PP2A)-dependent manner. Chronic exposure to either CNP or ANP caused a significant down-regulation of both GC-A- and GC-B-dependent cGMP accumulation in a ligand-specific manner. However, this down-regulation was not accompanied by alterations in the sub-cellular localization of these receptors. Heterologous desensitization of GC-B signaling occurred in GH3 cells following exposure to either sphingosine-1-phosphate or thyrotrophin-releasing hormone (TRH). This heterologous desensitization was protein kinase C (PKC)-dependent, as pre-treatment with GF109203X prevented the effect of TRH on CNP/GC-B signaling. Collectively, these data indicate common and distinct properties of particulate guanylyl cyclase receptors in somatotropes and reveal that independent mechanisms of homologous and heterologous desensitization occur involving either PP2A or PKC. Guanylyl cyclase receptors thus represent potential novel therapeutic targets for treating growth-hormone-associated disorders

    Natriuretic Peptide Expression and Function in GH3 Somatolactotropes and Feline Somatotrope Pituitary Tumours.

    Get PDF
    Patients harbouring mutations in genes encoding C-type natriuretic peptide (CNP; NPPC) or its receptor guanylyl cyclase B (GC-B, NPR2) suffer from severe growth phenotypes; loss-of-function mutations cause achondroplasia, whereas gain-of-function mutations cause skeletal overgrowth. Although most of the effects of CNP/GC-B on growth are mediated directly on bone, evidence suggests the natriuretic peptides may also affect anterior pituitary control of growth. Our previous studies described the expression of NPPC and NPR2 in a range of human pituitary tumours, normal human pituitary, and normal fetal human pituitary. However, the natriuretic peptide system in somatotropes has not been extensively explored. Here, we examine the expression and function of the CNP/GC-B system in rat GH3 somatolactotrope cell line and pituitary tumours from a cohort of feline hypersomatotropism (HST; acromegaly) patients. Using multiplex RT-qPCR, all three natriuretic peptides and their receptors were detected in GH3 cells. The expression of Nppc was significantly enhanced following treatment with either 100 nM TRH or 10 µM forskolin, yet only Npr1 expression was sensitive to forskolin stimulation; the effects of forskolin and TRH on Nppc expression were PKA- and MAPK-dependent, respectively. CNP stimulation of GH3 somatolactotropes significantly inhibited Esr1, Insr and Lepr expression, but dramatically enhanced cFos expression at the same time point. Oestrogen treatment significantly enhanced expression of Nppa, Nppc, Npr1, and Npr2 in GH3 somatolactotropes, but inhibited CNP-stimulated cGMP accumulation. Finally, transcripts for all three natriuretic peptides and receptors were expressed in feline pituitary tumours from patients with HST. NPPC expression was negatively correlated with pituitary tumour volume and SSTR5 expression, but positively correlated with D2R and GHR expression. Collectively, these data provide mechanisms that control expression and function of CNP in somatolactotrope cells, and identify putative transcriptional targets for CNP action in somatotropes

    Restraint upon Embryonic Metatarsal Ex Vivo Growth by Hydrogel Reveals Interaction between Quasi-Static Load and the mTOR Pathway

    Get PDF
    Mechanical cues play a vital role in limb skeletal development, yet their influence and underpinning mechanisms in the regulation of endochondral ossification (EO) processes are incompletely defined. Furthermore, interactions between endochondral growth and mechanics and the mTOR/NF-&#312;B pathways are yet to be explored. An appreciation of how mechanical cues regulate EO would also clearly be beneficial in the context of fracture healing and bone diseases, where these processes are recapitulated. The study herein addresses the hypothesis that the mTOR/NF-&#312;B pathways interact with mechanics to control endochondral growth. To test this, murine embryonic metatarsals were incubated ex vivo in a hydrogel, allowing for the effects of quasi-static loading on longitudinal growth to be assessed. The results showed significant restriction of metatarsal growth under quasi-static loading during a 14-day period and concentration-dependent sensitivity to hydrogel-related restriction. This study also showed that hydrogel-treated metatarsals retain their viability and do not present with increased apoptosis. Metatarsals exhibited reversal of the growth-restriction when co-incubated with mTOR compounds, whilst it was found that these compounds showed no effects under basal culture conditions. Transcriptional changes linked to endochondral growth were assessed and downregulation of Col2 and Acan was observed in hydrogel-treated metatarsi at day 7. Furthermore, cell cycle analyses confirmed the presence of chondrocytes exhibiting S-G2/M arrest. These data indicate that quasi-static load provokes chondrocyte cell cycle arrest, which is partly overcome by mTOR, with a less marked interaction for NF-&#312;B regulators

    Limited alterations in the gene expression of angiogenic mediators in vascular EC in the presence of live <i>B. malayi</i> Mf.

    No full text
    <p>HUVEC or HLMVEC were cultured with or without live untreated <i>B. malayi</i> Mf or <i>Wolbachia</i>-depleted Mf for 24 hours prior to isolation of total EC RNA. An oligo microarray was used to analyse mRNA expression of various angiogenesis mediators (a). mRNA expression was compared between HUVEC in the absence of Mf vs. presence of intact Mf and HUVEC in the absence of Mf vs. presence of <i>Wolbachia</i>-depleted Mf. HUVEC and HLMVEC mRNA expression of (b) Ang-2, (c) BAI-1, (d) TNFSF15 and (e) COX-2 was also analysed by real time qRT-PCR. Data are shown as the mean of two independent experiments (oligo microarray) or mean and standard deviation of three independent experiments (qRT-PCR). Students t-test was used to analyse statistical significance. (f) HO-1 protein expression in HLMVEC is enhanced by live Mf presence. HLMVEC were left unstimulated or were stimulated with IFN-γ for 24 or 48 hours, prior to co-culture with live Mf for a further 6, 12 or 24 hours. HLMVEC cells were lysed and the cell lysate was analysed for protein levels of HO-1 by western blotting.</p

    Live <i>B. malayi</i> Mf presence does not alter gene expression of vascular EC cytokine, chemokine and chemokine receptors.

    No full text
    <p>HUVEC or HLMVEC were cultured with live <i>B. malayi</i> Mf for 24 hours prior to isolation of total EC RNA, harvest of supernatant or cell lysis. An oligo microarray was used to analyse mRNA expression of various cytokines, chemokines and chemokine receptors. Genes with the greatest differences in expression upon Mf exposure are circled in (a). Oligo microarray data are shown as the mean of two independent experiments. HUVEC supernatant was analysed for protein expression of various cytokines using a protein array (b) or the cytokines IL-6 (c) and TGF-β1 (d) were measured by ELISA. IL-13 was measured in HUVEC lysate by ELISA (e). Protein assays show the mean and standard deviation per group of two (protein arrays) or three (ELISA) independent experiments. The label CXCL1-3 in the protein array defines the measurement of a common epitope for CXCL1, CXCL2 and CXCL3.</p

    CCR5 and CCR10 are upregulated in vascular EC by live Mf presence.

    No full text
    <p>HUVEC or HLMVEC were cultured with live <i>B. malayi</i> Mf for 24 hours prior to isolation of total EC RNA and flow cytometric analysis. CCR5 surface expression was measured by flow cytometry of HUVEC incubated with or without Mf and labeled with isotype control or anti-human CCR5. The FACS plot is presented and a bar graph presenting mean fluorescence intensity (MFI) of CCR5 in HUVEC ± Mf (a). Real time quantitative RT-PCR was used to analyse mRNA expression of CCR5 (b) and CCR10 (c) in HUVEC and HLMVEC. Data are shown as the mean and standard deviation of three independent experiments and analysed by Students t-test.</p

    Live Mf presence does not alter HUVEC expression of key mediators of the tethering stage of monocyte and neutrophil extravasation.

    No full text
    <p>HUVEC were cultured with or without Mf for 24 hours prior to flow cytometry analysis and harvesting of supernatant. HUVEC surface expression of (a) ICAM-1 and (b) VCAM-1 was analysed by flow cytometry. Using ELISA, the supernatant was analysed for the protein secretion of (c) CCL2 and (d) IL-8. Data are shown as the mean and standard deviation per group of three independent experiments.</p
    corecore