6,374 research outputs found
Results from the search for neutrinoless double beta decay with NEMO-3 and The SuperNEMO project
International audienceThe NEMO-3 experiment located in the Modane Underground Laboratory (LSM) is searching for neutrinoless double beta decay. The experiment has been taking data since 2003 with a range of isotopes. The main isotopes are ~ 7 kg of 100Mo and ~ 1 kg of 82Se. Since no evidence for neutrinoless double beta decay has been found, a 90% Confidence Level lower limit on the half-life of this process is derived. From this we determine an upper limit on the effective Majorana neutrino mass. New results using 150Nd, an isotope of special interest due to its potential use in future experiments, will also be presented. The data are also interpreted in terms of alternative models, such as weak right-handed currents or Majoron emission. NEMO-3 has also performed precision measurements of the standard model double beta decay process for several isotopes. Measurements of this process are important for reducing the uncertainties on nuclear matrix elements. A precise measurement of the half-life for the double beta decay of 130Te and a comparison with the conflicting results from geochemical experiments has also been performed. The most recent experimental results of NEMO-3 will be presented
Bulge plus disc and S\'ersic decomposition catalogues for 16,908 galaxies in the SDSS Stripe 82 co-adds: A detailed study of the structural measurements
Quantitative characterization of galaxy morphology is vital in enabling
comparison of observations to predictions from galaxy formation theory.
However, without significant overlap between the observational footprints of
deep and shallow galaxy surveys, the extent to which structural measurements
for large galaxy samples are robust to image quality (e.g., depth, spatial
resolution) cannot be established. Deep images from the Sloan Digital Sky
Survey (SDSS) Stripe 82 co-adds provide a unique solution to this problem -
offering magnitudes improvement in depth with respect to SDSS Legacy
images. Having similar spatial resolution to Legacy, the co-adds make it
possible to examine the sensitivity of parametric morphologies to depth alone.
Using the Gim2D surface-brightness decomposition software, we provide public
morphology catalogs for 16,908 galaxies in the Stripe 82 co-adds. Our
methods and selection are completely consistent with the Simard et al. (2011)
and Mendel et al. (2014) photometric decompositions. We rigorously compare
measurements in the deep and shallow images. We find no systematics in total
magnitudes and sizes except for faint galaxies in the -band and the
brightest galaxies in each band. However, characterization of bulge-to-total
fractions is significantly improved in the deep images. Furthermore, statistics
used to determine whether single-S\'ersic or two-component (e.g., bulge+disc)
models are required become more bimodal in the deep images. Lastly, we show
that asymmetries are enhanced in the deep images and that the enhancement is
positively correlated with the asymmetries measured in Legacy images.Comment: 27 pages, 14 figures. MNRAS accepted. Our catalogs are available in
TXT and SQL formats at
http://orca.phys.uvic.ca/~cbottrel/share/Stripe82/Catalogs
Clues to the Origin of the Mass-Metallicity Relation: Dependence on Star Formation Rate and Galaxy Size
We use a sample of 43,690 galaxies selected from the Sloan Digital Sky Survey
Data Release 4 to study the systematic effects of specific star formation rate
(SSFR) and galaxy size (as measured by the half light radius, r_h) on the
mass-metallicity relation. We find that galaxies with high SSFR or large r_h
for their stellar mass have systematically lower gas phase-metallicities (by up
to 0.2 dex) than galaxies with low SSFR or small r_h. We discuss possible
origins for these dependencies, including galactic winds/outflows, abundance
gradients, environment and star formation rate efficiencies.Comment: Accepted by ApJ Letter
First results of the NEMO3 experiment
The objective of the NEMO Collaboration is to search for neutrinoless double beta decay and thus to investigate physics beyond the Standard Model. The expected sensitivity for the effective neutrino mass is on the order of 0.1 eV. The NEMO-3 detector has been operating in the Fréjus Underground Laboratory and has been collecting data since February of 2003. The half-life of two-neutrino double beta decay has been measured for 100Mo and 82Se. Constraints on the background for neutrinoless double beta decay have been set.
PACS: 23.40.-s Beta decay; double beta decay; electron and muon capture – 14.60.Pq Neutrino mass and mixin
The signature of dissipation in the mass-size relation: are bulges simply spheroids wrapped in a disc?
The relation between the stellar mass and size of a galaxy's structural
subcomponents, such as discs and spheroids, is a powerful way to understand the
processes involved in their formation. Using very large catalogues of
photometric bulge+disc structural decompositions and stellar masses from the
Sloan Digital Sky Survey Data Release Seven, we carefully define two large
subsamples of spheroids in a quantitative manner such that both samples share
similar characteristics with one important exception: the 'bulges' are embedded
in a disc and the 'pure spheroids' are galaxies with a single structural
component. Our bulge and pure spheroid subsample sizes are 76,012 and 171,243
respectively. Above a stellar mass of ~ M, the mass-size
relations of both subsamples are parallel to one another and are close to lines
of constant surface mass density. However, the relations are offset by a factor
of 1.4, which may be explained by the dominance of dissipation in their
formation processes. Whereas the size-mass relation of bulges in discs is
consistent with gas-rich mergers, pure spheroids appear to have been formed via
a combination of 'dry' and 'wet' mergers.Comment: Accepted for publication in MNRAS, 6 pages, 3 figure
The SBF Survey of Galaxy Distances. I. Sample Selection, Photometric Calibration, and the Hubble Constant
We describe a program of surface brightness fluctuation (SBF) measurements
for determining galaxy distances. This paper presents the photometric
calibration of our sample and of SBF in general. Basing our zero point on
observations of Cepheid variable stars, we find that the absolute SBF magnitude
in the Kron-Cousins I band correlates well with the mean (V-I)o color of a
galaxy according to
M_Ibar = (-1.74 +/- 0.07) + (4.5 +/- 0.25) [ (V-I)o - 1.15 ]
for 1.0 < (V-I) < 1.3. This agrees well with theoretical estimates from
stellar population models. Comparisons between SBF distances and a variety of
other estimators, including Cepheid variable stars, the Planetary Nebula
Luminosity Function (PNLF), Tully-Fisher (TF), Dn-sigma, SNII, and SNIa,
demonstrate that the calibration of SBF is universally valid and that SBF error
estimates are accurate. The zero point given by Cepheids, PNLF, TF (both
calibrated using Cepheids), and SNII is in units of Mpc; the zero point given
by TF (referenced to a distant frame), Dn-sigma and SNIa is in terms of a
Hubble expansion velocity expressed in km/s. Tying together these two zero
points yields a Hubble constant of H_0 = 81 +/- 6 km/s/Mpc. As part of this
analysis, we present SBF distances to 12 nearby groups of galaxies where
Cepheids, SNII, and SNIa have been observed.Comment: 29 pages plus 8 figures; LaTeX (AASTeX) uses aaspp4.sty (included);
To appear in The Astrophysical Journal, 1997 February 1 issue; Compressed
PostScript available from ftp://mars.tuc.noao.edu/sbf
- …
