The relation between the stellar mass and size of a galaxy's structural
subcomponents, such as discs and spheroids, is a powerful way to understand the
processes involved in their formation. Using very large catalogues of
photometric bulge+disc structural decompositions and stellar masses from the
Sloan Digital Sky Survey Data Release Seven, we carefully define two large
subsamples of spheroids in a quantitative manner such that both samples share
similar characteristics with one important exception: the 'bulges' are embedded
in a disc and the 'pure spheroids' are galaxies with a single structural
component. Our bulge and pure spheroid subsample sizes are 76,012 and 171,243
respectively. Above a stellar mass of ~1010 M⊙, the mass-size
relations of both subsamples are parallel to one another and are close to lines
of constant surface mass density. However, the relations are offset by a factor
of 1.4, which may be explained by the dominance of dissipation in their
formation processes. Whereas the size-mass relation of bulges in discs is
consistent with gas-rich mergers, pure spheroids appear to have been formed via
a combination of 'dry' and 'wet' mergers.Comment: Accepted for publication in MNRAS, 6 pages, 3 figure