4 research outputs found

    Potential of sub-THz-wave generation in Li2B4O7 nonlinear crystal at room and cryogenic temperatures

    Get PDF
    Due to their high optical damage threshold, borate crystals can be used for the efficient nonlinear down-conversion of terawatt laser radiation into the terahertz (THz) frequency range of the electromagnetic spectrum. In this work, we carried out a thorough study of the terahertz optical properties of the lithium tetraborate crystal (Li2B4O7; LB4) at 295 and 77 K. Approximating the terahertz refractive index in the form of Sellmeier’s equations, we assessed the possibility of converting the radiation of widespread high-power laser sources with wavelengths of 1064 and 800 nm, as well as their second and third harmonics, into the THz range. It was found that four out of eight types of three-wave mixing processes are possible. The conditions for collinear phase matching were fulfilled only for the o - e -o type of interaction, while cooling the crystal to 77 K did not practically affect the phase-matching curves. However, a noticeable increase of birefringence in the THz range with cooling (from 0.12 to 0.16) led to an increase in the coherence length for o-o-e and e-e-e types of interaction, which are potentially attractive for the down-conversion of ultrashort laser pulses

    Regulating Morphology and Composition of Laser-Induced Periodic Structures on Titanium Films with Femtosecond Laser Wavelength and Ambient Environment

    No full text
    Recently, highly uniform thermochemical laser-induced periodic surface structures (TLIPSS) have attracted significant research attention due to their practical applicability for upscalable fabrication of periodic surface morphologies important for surface functionalization, diffraction optics, sensors, etc. When processed by femtosecond (fs) laser pulses in oxygen-containing environments, TLIPSS are formed on the material surface as parallel protrusions upon local oxidation in the maxima of the periodic intensity pattern coming from interference of the incident and scattered waves. From an application point of view, it is important to control both the TLIPSS period and nanoscale morphology of the formed protrusions that can be expectedly achieved by scalable shrinkage of the laser-processing wavelength as well as by varying the ambient environment. However, so far, the fabrication of uniform TLIPSS was reported only for near-IR wavelength in air. In this work, TLIPSS formation on the surface of titanium (Ti) films was systematically studied using near-IR (1026 nm), visible (513 nm) and UV (256 nm) wavelengths revealing linear scalability of the protrusion period versus the fs-laser wavelength. By changing the ambient environment from air to vacuum (10−2 atm) and pressurized nitrogen gas (2.5 atm) we demonstrate tunability of the composition and morphology of the Ti TLIPSS protrusions. In particular, Raman spectroscopy revealed formation of TiN together with dominating TiO2 (rutile phase) in the TLIPSS protrusions produced in the nitrogen-rich atmosphere

    Femtosecond Laser Direct Writing of Antireflection Microstructures on the Front and Back Sides of a GaSe Crystal

    No full text
    The development of antireflection coatings is crucially important to improve the performance of various photonic devices, for example, to increase the efficiency of harmonic generators based on high-refractive index crystals with significant Fresnel losses. A promising technique for the reducing of radiation reflection is to change the refractive index by fabrication of antireflection microstructures (ARM) on the surface. This paper presents the results of ARM direct writing on the surfaces of a nonlinear GaSe crystal (of ε modification, according to Raman and photoluminescence spectroscopy data) using fs laser radiation and a multiples approach. An increase in transmission from 65% to 80% for an ARM fabricated on one side of the crystal and up to 94% for ARMs fabricated on both sides is demonstrated. The increase in transmission with the increasing pulse energy, as well as with an increase in the number of pulses used for the formation of a single crater, is shown. The experimental results of ARM transmission of GaSe are in qualitative agreement with the simulation results based on the measured profiles and morphology of the ARM structures

    Femtosecond Laser Direct Writing of Antireflection Microstructures on the Front and Back Sides of a GaSe Crystal

    No full text
    The development of antireflection coatings is crucially important to improve the performance of various photonic devices, for example, to increase the efficiency of harmonic generators based on high-refractive index crystals with significant Fresnel losses. A promising technique for the reducing of radiation reflection is to change the refractive index by fabrication of antireflection microstructures (ARM) on the surface. This paper presents the results of ARM direct writing on the surfaces of a nonlinear GaSe crystal (of ε modification, according to Raman and photoluminescence spectroscopy data) using fs laser radiation and a multiples approach. An increase in transmission from 65% to 80% for an ARM fabricated on one side of the crystal and up to 94% for ARMs fabricated on both sides is demonstrated. The increase in transmission with the increasing pulse energy, as well as with an increase in the number of pulses used for the formation of a single crater, is shown. The experimental results of ARM transmission of GaSe are in qualitative agreement with the simulation results based on the measured profiles and morphology of the ARM structures
    corecore