5,780 research outputs found

    Impulsive Heating of Solar Flare Ribbons Above 10 MK

    Get PDF
    The chromospheric response to the input of flare energy is marked by extended extreme ultraviolet (EUV) ribbons and hard X-ray (HXR) footpoints. These are usually explained as the result of heating and bremsstrahlung emission from accelerated electrons colliding in the dense chromospheric plasma. We present evidence of impulsive heating of flare ribbons above 10 MK in a two-ribbon flare. We analyse the impulsive phase of SOL2013-11-09T06:38, a C2.6 class event using data from Atmospheric Imaging Assembly (AIA) on board of Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to derive the temperature, emission measure and differential emission measure of the flaring regions and investigate the evolution of the plasma in the flaring ribbons. The ribbons were visible at all SDO/AIA EUV/UV wavelengths, in particular, at 94 and 131 \AA\ filters, sensitive to temperatures of 8 MK and 12 MK. Time evolution of the emission measure of the plasma above 10 MK at the ribbons has a peak near the HXR peak time. The presence of hot plasma in the lower atmosphere is further confirmed by RHESSI imaging spectroscopy analysis, which shows resolved sources at 11-13 MK associated with at least one ribbon. We found that collisional beam heating can only marginally explain the necessary power to heat the 10 MK plasma at the ribbons.Comment: 21 pages, 15 figure

    The spectral content of SDO/AIA 1600 and 1700 \AA\ filters from flare and plage observations

    Get PDF
    The strong enhancement of the ultraviolet emission during solar flares is usually taken as an indication of plasma heating in the lower solar atmosphere caused by the deposition of the energy released during these events. Images taken with broadband ultraviolet filters by the {\em Transition Region and Coronal Explorer} (TRACE) and {\em Atmospheric Imaging Assembly} (AIA 1600 and 1700~\AA) have revealed the morphology and evolution of flare ribbons in great detail. However, the spectral content of these images is still largely unknown. Without the knowledge of the spectral contribution to these UV filters, the use of these rich imaging datasets is severely limited. Aiming to solve this issue, we estimate the spectral contributions of the AIA UV flare and plage images using high-resolution spectra in the range 1300 to 1900~\AA\ from the Skylab NRL SO82B spectrograph. We find that the flare excess emission in AIA 1600~\AA\ is { dominated by} the \ion{C}{4} 1550~\AA\ doublet (26\%), \ion{Si}{1} continua (20\%), with smaller contributions from many other chromospheric lines such as \ion{C}{1} 1561 and 1656~\AA\ multiplets, \ion{He}{2} 1640~\AA, \ion{Si}{2} 1526 and 1533~\AA. For the AIA 1700~\AA\ band, \ion{C}{1} 1656~\AA\ multiplet is the main contributor (38\%), followed by \ion{He}{2} 1640 (17\%), and accompanied by a multitude of other, { weaker} chromospheric lines, with minimal contribution from the continuum. Our results can be generalized to state that the AIA UV flare excess emission is of chromospheric origin, while plage emission is dominated by photospheric continuum emission in both channels.Comment: Accepted for publication in ApJ Skylab NRL SO82B data used in this work available at http://dx.doi.org/10.5525/gla.researchdata.68
    • …
    corecore