5 research outputs found

    Formation of Osmium-Allylphosphinomethanide Complexes by Coupling of an Isopropenyldiisopropylphosphine and Monosubstituted Allenes

    No full text
    Complex [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>3</sup>-<i>P</i>,<i>C</i>,<i>C</i>-P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}­(MeCN)]­PF<sub>6</sub> (<b>1</b>) reacts with cyclohexylallene and ethyl carboxylate allene to give the allylphosphinomethanide derivatives [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>5</sup>-<i>P</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>,<i>C</i><sup>c</sup>,<i>C</i><sup>d</sup>-P<sup>i</sup>Pr<sub>2</sub>[C<sup>a</sup>(Me)­CH<sub>2</sub>C<sup>b</sup>(C<sup>c</sup>H<sub>2</sub>)­C<sup>d</sup>HR]}]­PF<sub>6</sub> (R = Cy (<b>2</b>), CO<sub>2</sub>Et (<b>3</b>)). In fluorobenzene at 95 °C, complexes <b>2</b> and <b>3</b> evolve into the corresponding γ-allyl-α-alkenyldiisopropylphosphine compounds [OsH­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>4</sup>-<i>P</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>,<i>C</i><sup>c</sup>-P<sup>i</sup>Pr<sub>2</sub>[C­(CH<sub>2</sub>)­CH<sub>2</sub>C<sup>a</sup>(C<sup>b</sup>H<sub>2</sub>)­C<sup>c</sup>HR]}]­PF<sub>6</sub> (R = Cy (<b>4</b>), CO<sub>2</sub>Et (<b>5</b>)). Complexes <b>2</b> and <b>4</b> have been characterized by X-ray diffraction analysis

    Formation of Osmium-Allylphosphinomethanide Complexes by Coupling of an Isopropenyldiisopropylphosphine and Monosubstituted Allenes

    No full text
    Complex [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>3</sup>-<i>P</i>,<i>C</i>,<i>C</i>-P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}­(MeCN)]­PF<sub>6</sub> (<b>1</b>) reacts with cyclohexylallene and ethyl carboxylate allene to give the allylphosphinomethanide derivatives [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>5</sup>-<i>P</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>,<i>C</i><sup>c</sup>,<i>C</i><sup>d</sup>-P<sup>i</sup>Pr<sub>2</sub>[C<sup>a</sup>(Me)­CH<sub>2</sub>C<sup>b</sup>(C<sup>c</sup>H<sub>2</sub>)­C<sup>d</sup>HR]}]­PF<sub>6</sub> (R = Cy (<b>2</b>), CO<sub>2</sub>Et (<b>3</b>)). In fluorobenzene at 95 °C, complexes <b>2</b> and <b>3</b> evolve into the corresponding γ-allyl-α-alkenyldiisopropylphosphine compounds [OsH­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>4</sup>-<i>P</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>,<i>C</i><sup>c</sup>-P<sup>i</sup>Pr<sub>2</sub>[C­(CH<sub>2</sub>)­CH<sub>2</sub>C<sup>a</sup>(C<sup>b</sup>H<sub>2</sub>)­C<sup>c</sup>HR]}]­PF<sub>6</sub> (R = Cy (<b>4</b>), CO<sub>2</sub>Et (<b>5</b>)). Complexes <b>2</b> and <b>4</b> have been characterized by X-ray diffraction analysis

    Aryldihydroborane Coordination to Iridium and Osmium Hydrido Complexes

    No full text
    A series of iridium dihydroborate complexes [(<sup>t</sup>BuPOCOP)­IrH­(κ<sup>2</sup>-H<sub>2</sub>BHR)] (<sup>t</sup>BuPOCOP = κ<sup>3</sup>-C<sub>6</sub>H<sub>3</sub>-1,3-[OP<sup>t</sup>Bu<sub>2</sub>]<sub>2</sub>; R = Mes = 2,4,6-Me<sub>3</sub>C<sub>6</sub>H<sub>2</sub>; R = Dur = 2,3,5,6-Me<sub>4</sub>C<sub>6</sub>H) and [LIrH­(κ<sup>2</sup>-H<sub>2</sub>BHDur)] (L = <sup>t</sup>BuPCP = κ<sup>3</sup>-C<sub>6</sub>H<sub>3</sub>-1,3-[CH<sub>2</sub>P<sup>t</sup>Bu<sub>2</sub>]<sub>2</sub>, L = η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>) and an osmium dihydroborate compound [OsH­(κ<sup>2</sup>-H<sub>2</sub>BHDur)­(CO)­(P<sup>i</sup>Pr<sub>3</sub>)<sub>2</sub>] have been prepared by using two different synthetic strategies. The first approach is based on direct borane coordination to the metal center, whereas the second is based on a salt-elimination protocol using the lithium salts Li­[H<sub>3</sub>BR] (R = Mes or Dur) and the corresponding metal halides. The compounds have been characterized by multinuclear NMR and IR spectroscopy and X-ray diffraction analysis. The results constitute the first syntheses of κ<sup>2</sup>-σ:σ-dihydroborate complexes featuring bulky aryl groups

    Osmium Models of Intermediates Involved in Catalytic Reactions of Alkylidenecyclopropanes

    No full text
    The complex [OsCp­{κ<sup>3</sup>-<i>P</i>,<i>C</i>,<i>C</i>-P<sup>i</sup>Pr<sub>2</sub>[C­(CH<sub>3</sub>)CH<sub>2</sub>]}­(CH<sub>3</sub>CN)]­PF<sub>6</sub> (<b>1</b>) reacts with (2-pyridyl)­methylenecyclopropane, at room temperature, to give initially the cyclobutylidene derivative [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(CCH<sub>2</sub>CH<sub>2</sub>CH-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N)­{P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}]­PF<sub>6</sub> (<b>2</b>), as a result of the ring expansion of the alkylidenecyclopropane unit. Over time complex <b>2</b> rearranges into the cyclobutene derivative [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>2</sup>-C­(CHCH<sub>2</sub>CH<sub>2</sub>)-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N}­{P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}]­PF<sub>6</sub> (<b>3</b>). The reaction of <b>1</b> with (2-pyridyl)­methylenecyclopropane at room temperature also affords the phosphinomethanide metallacycle [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>4</sup>-<i>P</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>,<i>N</i>-P<sup>i</sup>Pr<sub>2</sub>[C<sup>a</sup>(Me)­CH<sub>2</sub>CH)­(C<sup>b</sup>CH<sub>2</sub>CH<sub>2</sub>-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N]}]­PF<sub>6</sub> (<b>4</b>) as a minor product, which becomes the major product of the reaction at 45 °C. This osmacyclopentane results from the C–C coupling of the isopropenyl substituent of the phosphine ligand and the organic substrate. In acetone at 75 °C, the reaction of <b>1</b> with (2-pyridyl)­methylenecyclopropane leads to the 2-alkylidene-1-osmacyclobutane [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>3</sup>-<i>N</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>-C<sup>a</sup>(CH<sub>2</sub>C<sup>b</sup>H<sub>2</sub>)­(CH-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N)}­{P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}]­PF<sub>6</sub> (<b>5</b>), as a consequence of the oxidative addition of one of the C­(sp<sup>2</sup>)–C­(sp<sup>3</sup>) bonds of the cyclopropane unit of the substrate to the osmium atom, along with <b>6</b>, a diastereomer of <b>4</b>. Complexes <b>3</b>–<b>5</b> have been characterized by X-ray diffraction analysis. DFT calculations suggest that all of the reaction products are derived from a common key 1-osma-2-azacyclopent-3-ene intermediate (<b>D</b>)

    Osmium Models of Intermediates Involved in Catalytic Reactions of Alkylidenecyclopropanes

    No full text
    The complex [OsCp­{κ<sup>3</sup>-<i>P</i>,<i>C</i>,<i>C</i>-P<sup>i</sup>Pr<sub>2</sub>[C­(CH<sub>3</sub>)CH<sub>2</sub>]}­(CH<sub>3</sub>CN)]­PF<sub>6</sub> (<b>1</b>) reacts with (2-pyridyl)­methylenecyclopropane, at room temperature, to give initially the cyclobutylidene derivative [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­(CCH<sub>2</sub>CH<sub>2</sub>CH-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N)­{P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}]­PF<sub>6</sub> (<b>2</b>), as a result of the ring expansion of the alkylidenecyclopropane unit. Over time complex <b>2</b> rearranges into the cyclobutene derivative [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{η<sup>2</sup>-C­(CHCH<sub>2</sub>CH<sub>2</sub>)-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N}­{P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}]­PF<sub>6</sub> (<b>3</b>). The reaction of <b>1</b> with (2-pyridyl)­methylenecyclopropane at room temperature also affords the phosphinomethanide metallacycle [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>4</sup>-<i>P</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>,<i>N</i>-P<sup>i</sup>Pr<sub>2</sub>[C<sup>a</sup>(Me)­CH<sub>2</sub>CH)­(C<sup>b</sup>CH<sub>2</sub>CH<sub>2</sub>-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N]}]­PF<sub>6</sub> (<b>4</b>) as a minor product, which becomes the major product of the reaction at 45 °C. This osmacyclopentane results from the C–C coupling of the isopropenyl substituent of the phosphine ligand and the organic substrate. In acetone at 75 °C, the reaction of <b>1</b> with (2-pyridyl)­methylenecyclopropane leads to the 2-alkylidene-1-osmacyclobutane [Os­(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>)­{κ<sup>3</sup>-<i>N</i>,<i>C</i><sup>a</sup>,<i>C</i><sup>b</sup>-C<sup>a</sup>(CH<sub>2</sub>C<sup>b</sup>H<sub>2</sub>)­(CH-<i>o</i>-C<sub>5</sub>H<sub>4</sub>N)}­{P<sup>i</sup>Pr<sub>2</sub>[C­(Me)CH<sub>2</sub>]}]­PF<sub>6</sub> (<b>5</b>), as a consequence of the oxidative addition of one of the C­(sp<sup>2</sup>)–C­(sp<sup>3</sup>) bonds of the cyclopropane unit of the substrate to the osmium atom, along with <b>6</b>, a diastereomer of <b>4</b>. Complexes <b>3</b>–<b>5</b> have been characterized by X-ray diffraction analysis. DFT calculations suggest that all of the reaction products are derived from a common key 1-osma-2-azacyclopent-3-ene intermediate (<b>D</b>)
    corecore