123 research outputs found
Bioinspired Magnetic Nanochains for Medicine
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely used for medicine, both in therapy and diagnosis. Their guided assembly into anisotropic structures, such as nanochains, has recently opened new research avenues; for instance, targeted drug delivery. Interestingly, magnetic nanochains do occur in nature, and they are thought to be involved in the navigation and geographic orientation of a variety of animals and bacteria, although many open questions on their formation and functioning remain. In this review, we will analyze what is known about the natural formation of magnetic nanochains, as well as the synthetic protocols to produce them in the laboratory, to conclude with an overview of medical applications and an outlook on future opportunities in this exciting research field
Growth, properties, and applications of branched carbon nanostructures
Nanomaterials featuring branched carbon nanotubes (b-CNTs), nanofibers (b-CNFs), or other types of carbon nanostructures (CNSs) are of great interest due to their outstanding mechanical and electronic properties. They are promising components of nanodevices for a wide variety of advanced applications spanning from batteries and fuel cells to conductive-tissue regeneration in medicine. In this concise review, we describe the methods to produce branched CNSs, with particular emphasis on the most widely used b-CNTs, the experimental and theoretical studies on their properties, and the wide range of demonstrated and proposed applications, highlighting the branching structural features that ultimately allow for enhanced performance relative to traditional, unbranched CNSs
Cysteine Redox Chemistry in Peptide Self-Assembly to Modulate Hydrogelation
Cysteine redox chemistry is widely used in nature to direct protein assembly, and in recent years it has inspired chemists to design self-assembling peptides too. In this concise review, we describe the progress in the field focusing on the recent advancements that make use of Cys thiol-disulfide redox chemistry to modulate hydrogelation of various peptide classes
Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications
Self-assembling peptides and carbon nanomaterials have attracted great interest for their respective potential to bring innovation in the biomedical field. Combination of these two types of building blocks is not trivial in light of their very different physico-chemical properties, yet great progress has been made over the years at the interface between these two research areas. This concise review will analyze the latest developments at the forefront of research that combines self-assembling peptides with carbon nanostructures for biological use. Applications span from tissue regeneration, to biosensing and imaging, and bioelectronics
Wire Up on Carbon Nanostructures! How To Play a Winning Game
Carbon nanotubes and graphene possess a unique extended \u3c0-system that makes them stand out among carbon nanostructures. The resulting electronic properties enable electron or charge flow along one or two directions, respectively, thus offering the opportunity to connect electronically different entities that come into contact, be they living cells or catalytic systems. Using these carbon nanostructures thus holds great promise in providing innovative solutions to address key challenges in the fields of medicine and energy. Here, we discuss how chemical functionalization of these carbon nanostructures is a crucial tool to master their properties and deliver innovation
Nanotubes and water-channels from self-assembling dipeptides
Dipeptides are attractive building blocks for biomaterials in light of their inherent biocompatibility, biodegradability, and simplicity of preparation. Since the discovery of diphenylalanine (Phe-Phe) self-assembling ability into nanotubes, research efforts have been devoted towards the identification of other dipeptide sequences capable of forming these interesting nanomorphologies, although design rules towards nanotube formation are still elusive. In this review, we analyze the dipeptide sequences reported thus far for their ability to form nanotubes, which often feature water-filled supramolecular channels as revealed by single-crystal X-ray diffraction, as well as their properties, and their potential biological applications, which span from drug delivery and regenerative medicine, to bioelectronics and bioimaging
Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering
Will Magnetic Nanomedicine Realise the Future of Therapy and Diagnosis?
1noMedicine has long been looking at nanotechnology to continue its development in new directions, especially towards personalized therapy and early diagnosis of some fatal diseases. Amongst the many facets of the so-called “nanomedicine”, those related to the application of magnetic forces are particularly appealing to detect, or even to guide, nanodevices in a minimally-invasive manner. This special issue covers only the most recent advances in “magnetic nanomedicine”. The aim is to provide the medicinal chemist with a concise guide of both 1) the most innovative tools that offer new paradigms for clinical intervention, and 2) the more conventional approaches that made significant progress to realise the ambitious goal of reaching the patient.partially_openembargoed_20180331Marchesan, SilviaMarchesan, Silvi
- …