1,022 research outputs found

    So Far, So Close: Identification with Proximal and Distal Groups as a Resource in Dealing with the COVID-19 Pandemic

    Get PDF
    A robust body of research has highlighted the fundamental role of social identifications in dealing with emergencies and in predicting commitment behaviors. We report the results of two studies carried out in Italy to assess whether the subjective sense of belonging to meaningful proximal and distal social groups affected people’s ability to cope with the pandemic crisis. Study 1 (N = 846) shows that different identifications with proximal (i.e., family and friends) and distal social groups (i.e., nation, European, and humankind) may act as buffers for individuals by reducing negative emotions and negative expectations about the future after COVID-19 and by increasing people’s intentions to adhere to containment measures and to be involved in prosocial actions. Study 2 (N = 350) highlights the role of European identification in predicting propensities for using the tracing app and getting vaccinated. These results confirm the benefits of various types of identification (proximal vs. distant) in helping individuals deal with the COVID-19 pandemic

    The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts

    Get PDF
    Objectives:The aim of this study was to assess the biological rationale for the use of platelet-rich plasma (PRP) by evaluating the effect of different concentrations of PRP on osteoblasts (OB) and fibroblasts (FB) function in vitro. Materials and methods:PRP was obtained from volunteer donors using standard protocols. Primary human cultures of oral FBs and OBs were exposed to both activated and non-activated plasma as well as various concentrations of PRP (2.5 x, 3.5 x and max (4.2-5.5 x)). Cell proliferation was evaluated after 24 and 72 h using an MTT proliferation assay. Production of osteocalcin (OCN), osteoprotegerin (OPG) and transforming growth factor beta 1 (TGF-beta 1) was evaluated in OB after 24 and 72 h. Statistical analysis was performed using one-way ANOVA. Results:PRP-stimulated cell proliferation in both OBs and FBs. The effect of different PRP concentrations on cell proliferation was most notable at 72 h. The maximum effect was achieved with a concentration of 2.5 x, with higher concentrations resulting in a reduction of cell proliferation. Upregulation of OCN levels and downregulation of OPG levels were noted with increasing PRP concentrations at both 24 and 72 h. TGF-beta 1 levels were stimulated by increasing concentrations of PRP, with the increased levels being maintained at 72 h. Conclusions:PRP preparations exert a dose-specific effect on oral FBs and OBs. Optimal results were observed at a platelet concentration of 2.5 x, which was approximately half of the maximal concentrate that could be obtained. Increased concentrations resulted in a reduction in proliferation and a suboptimal effect on OB function. Hence, different PRP concentrations may have an impact on the results that can be obtained in vivo

    Weisfeiler--Lehman goes Dynamic: An Analysis of the Expressive Power of Graph Neural Networks for Attributed and Dynamic Graphs

    Full text link
    Graph Neural Networks (GNNs) are a large class of relational models for graph processing. Recent theoretical studies on the expressive power of GNNs have focused on two issues. On the one hand, it has been proven that GNNs are as powerful as the Weisfeiler-Lehman test (1-WL) in their ability to distinguish graphs. Moreover, it has been shown that the equivalence enforced by 1-WL equals unfolding equivalence. On the other hand, GNNs turned out to be universal approximators on graphs modulo the constraints enforced by 1-WL/unfolding equivalence. However, these results only apply to Static Undirected Homogeneous Graphs with node attributes. In contrast, real-life applications often involve a variety of graph properties, such as, e.g., dynamics or node and edge attributes. In this paper, we conduct a theoretical analysis of the expressive power of GNNs for these two graph types that are particularly of interest. Dynamic graphs are widely used in modern applications, and its theoretical analysis requires new approaches. The attributed type acts as a standard form for all graph types since it has been shown that all graph types can be transformed without loss to Static Undirected Homogeneous Graphs with attributes on nodes and edges (SAUHG). The study considers generic GNN models and proposes appropriate 1-WL tests for those domains. Then, the results on the expressive power of GNNs are extended by proving that GNNs have the same capability as the 1-WL test in distinguishing dynamic and attributed graphs, the 1-WL equivalence equals unfolding equivalence and that GNNs are universal approximators modulo 1-WL/unfolding equivalence. Moreover, the proof of the approximation capability holds for SAUHGs, which include most of those used in practical applications, and it is constructive in nature allowing to deduce hints on the architecture of GNNs that can achieve the desired accuracy

    Case report: Coxiella burnetii endocarditis in the absence of evident exposure

    Get PDF
    Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. In humans, it can manifest clinically as an acute or chronic disease and endocarditis, the most frequent complication of chronic Q fever is associated with the greatest morbidity and mortality. We report a severe case of endocarditis in a 55-year-old man with a history of aortic valve replacement affected by monoclonal gammopathy of undetermined significance (MGUS), and living in a non-endemic area for C. burnetii. After two episodes of fever of unknown origin (FUO), occurring 2 years apart and characterized by negative blood cultures, a serological diagnosis of Q fever endocarditis was performed even though the patient did not refer to possible past exposure to C. burnetii. Since people with preexisting valvular heart disease, when infected with C. burnetii, have reported a 40% risk of Q fever endocarditis, clinicians should maintain a high index of suspicion for infective endocarditis in all patients with FUO even when the exposure to C. burnetii appears to be unlikely

    Role of Diacylglycerol Kinases in Acute Myeloid Leukemia

    Get PDF
    : Diacylglycerol kinases (DGKs) play dual roles in cell transformation and immunosurveillance. According to cancer expression databases, acute myeloid leukemia (AML) exhibits significant overexpression of multiple DGK isoforms, including DGKA, DGKD and DGKG, without a precise correlation with specific AML subtypes. In the TGCA database, high DGKA expression negatively correlates with survival, while high DGKG expression is associated with a more favorable prognosis. DGKA and DGKG also feature different patterns of co-expressed genes. Conversely, the BeatAML and TARGET databases show that high DGKH expression is correlated with shorter survival. To assess the suitability of DGKs as therapeutic targets, we treated HL-60 and HEL cells with DGK inhibitors and compared cell growth and survival with those of untransformed lymphocytes. We observed a specific sensitivity to R59022 and R59949, two poorly selective inhibitors, which promoted cytotoxicity and cell accumulation in the S phase in both cell lines. Conversely, the DGKA-specific inhibitors CU-3 and AMB639752 showed poor efficacy. These findings underscore the pivotal and isoform-specific involvement of DGKs in AML, offering a promising pathway for the identification of potential therapeutic targets. Notably, the DGKA and DGKH isoforms emerge as relevant players in AML pathogenesis, albeit DGKA inhibition alone seems insufficient to impair AML cell viability

    A natural biogenic fluorapatite as a new biomaterial for orthopedics and dentistry: antibacterial activity of lingula seashell and its use for nanostructured biomimetic coatings

    Get PDF
    Calcium phosphates are widely studied in orthopedics and dentistry, to obtain biomimetic and antibacterial implants. However, the multi-substituted composition of mineralized tissues is not fully reproducible from synthetic procedures. Here, for the first time, we investigate the possible use of a natural, fluorapatite-based material, i.e., Lingula anatina seashell, resembling the composition of bone and enamel, as a biomaterial source for orthopedics and dentistry. Indeed, thanks to its unique mineralization process and conditions, L. anatina seashell is among the few natural apatite-based shells, and naturally contains ions having possible antibacterial efficacy, i.e., fluorine and zinc. After characterization, we explore its deposition by ionized jet deposition (IJD), to obtain nanostructured coatings for implantable devices. For the first time, we demonstrate that L. anatina seashells have strong antibacterial properties. Indeed, they significantly inhibit planktonic growth and cell adhesion of both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The two strains show different susceptibility to the mineral and organic parts of the seashells, the first being more susceptible to zinc and fluorine in the mineral part, and the second to the organic (chitin-based) component. Upon deposition by IJD, all films exhibit a nanostructured morphology and sub-micrometric thickness. The multi-doped, complex composition of the target is maintained in the coating, demonstrating the feasibility of deposition of coatings starting from biogenic precursors (seashells). In conclusion, Lingula seashell-based coatings are non-cytotoxic with strong antimicrobial capability, especially against Gram-positive strains, consistently with their higher susceptibility to fluorine and zinc. Importantly, these properties are improved compared to synthetic fluorapatite, showing that the films are promising for antimicrobial applications.Lingula anatina seashell is an apatite-based shells, and naturally contains fluorine and zinc alongside an organic part (chitin). For the first time, we demonstrate that it has strong antibacterial properties, and that it can be used as nanostructured coatings for orthopaedics and dentistry

    Biweekly Hizentra® in Primary Immunodeficiency: a Multicenter, Observational Cohort Study (IBIS)

    Get PDF
    Immunoglobulin G (IgG) replacement therapy is a standard treatment for patients with primary immunodeficiency diseases (PIDs). Hizentra®, a 20% human subcutaneous IgG (SCIG), is approved for biweekly administration for PIDs. The aim of the multicenter IBIS study was to prospectively investigate the efficacy of biweekly Hizentra® compared with previous IVIG or SCIG treatment regimens in patients with PIDs. The study consisted of a 12-month retrospective period followed by 12-month prospective observational period. The main endpoints included pre-infusion IgG concentrations, proportion of patients with serious bacterial infections (SBIs), other infections, hospitalizations due to PID-related illnesses, and days with antibiotics during the study periods. Of the 36 patients enrolled in the study, 35 patients continued the study (mean age 26.1 ± 14.4 years; 68.6% male). The mean pre-infusion IgG levels for prior immunoglobulin regimens during the retrospective period (7.84 ± 2.09 g/L) and the prospective period (8.55 ± 1.76 g/L) did not show any significant variations (p = 0.4964). The mean annual rate of SBIs/patient was 0.063 ± 0.246 for both prospective and retrospective periods. No hospitalizations related to PIDs were reported during the prospective period versus one in the retrospective period. All patients were either very (76.5%) or quite (23.5%) satisfied with biweekly Hizentra® at the end of the study. In conclusion, the IBIS study provided real-world evidence on the efficacy of biweekly Hizentra® in patients with PIDs, thus verifying the data generated by the pharmacometric modeling and simulation study in a normal clinical setting
    • …
    corecore