70 research outputs found

    Selectively Charged and Zwitterionic Analogues of the Smallest Immunogenic Structure of Streptococcus Pneumoniae Type 14

    Get PDF
    Zwitterionic polysaccharides (ZPs) have been shown in recent years to display peculiar immunological properties, thus attracting the interest of the carbohydrate research community. To fully elucidate the mechanisms underlying these properties and exploit the potential of this kind of structures, in depth studies are still required. In this context, the preparation of two cationic, an anionic, as well as two zwitterionic tetrasaccharide analogues of the smallest immunogenic structure of Streptococcus pneumoniae type 14 (SP14) capsular polysaccharide are presented. By exploiting a block strategy, the negative charge has been installed on the non-reducing end of the lactose unit of the tetrasaccharide and the positive charge either on the non-reducing end of the lactosamine moiety or on an external linker. These structures have then been tested by competitive ELISA, showing that the structural variations we made do not modify the affnity of the neutral compound to binding to a specific antibody. However, lower effcacies than the natural SP14 compound were observed. The results obtained, although promising, point to the need to further elongate the polysaccharide structure, which is likely too short to cover the entire epitopes

    Preparation and immunogenicity of gold glyco-nanoparticles as antipneumococcal vaccine model

    Get PDF
    Nanotechnology-based fully synthetic carbohydrate vaccines are promising alternatives to classic polysaccharide/protein conjugate vaccines. We have prepared gold glyco-nanoparticles (GNP) bearing two synthetic carbohydrate antigens related to serotypes 19F and 14 of Streptococcus pneumoniae and evaluated their immunogenicity in vivo. Results: A tetrasaccharide fragment of serotype 14 (Tetra-14), a trisaccharide fragment of serotype 19F (Tri-19F), a T-helper peptide and d -glucose were loaded onto GNP in different ratios. Mice immunization showed that the concomitant presence of Tri-19F and Tetra-14 on the same nanoparticle critically enhanced the titers of specific IgG antibodies toward type 14 polysaccharide compared with GNP exclusively displaying Tetra-14, while no IgG antibodies against type 19F polysaccharide were elicited. Conclusion: This work is a step forward toward synthetic nanosystems combining carbohydrate antigens and immunogenic peptides as potential carbohydrate-based vaccines

    Melanoma Cells Inhibit iNKT Cell Functions via PGE2 and IDO1

    No full text
    Invariant natural killer T (iNKT) cells are a distinct group of immune cells known for their immunoregulatory and cytotoxic activities, which are crucial in immune surveillance against tumors. They have been extensively investigated as a potential target for adoptive cell immunotherapy. Despite the initial promise of iNKT cell-based immunotherapy as a treatment for melanoma patients, its effective utilization has unfortunately yielded inconsistent outcomes. The primary cause of this failure is the immunosuppressive tumor microenvironment (TME). In this study, we specifically directed our attention towards melanoma cells, as their roles within the TME remain partially understood and require further elucidation. Methods: We conducted co-culture experiments involving melanoma cell lines and iNKT cells. Results: We demonstrated that melanoma cell lines had a significant impact on the proliferation and functions of iNKT cells. Our findings revealed that co-culture with melanoma cell lines led to a significant impairment in the expression of the NKG2D receptor and cytolytic granules in iNKT cells. Moreover, we observed a strong impairment of their cytotoxic capability induced by the presence of melanoma cells. Furthermore, through the use of selective inhibitors targeting IDO1 and COX-2, we successfully demonstrated that the melanoma cell line’s ability to impair iNKT cell activation and functions was attributed to the up-regulation of IDO1 expression and PGE2 production

    “In vitro” studies on galectin-3 in human natural killer cells

    No full text
    Galectin-3 (Gal-3) is a β-galactoside binding protein able to modulate both innate and adaptive immune responses. First identified in macrophages, Gal-3 has been studied widely in many mammalian immune cells, but scarcely in natural killer (NK) cells. The aim of this study was to analyze Gal-3 in human NK cells, isolated from peripheral blood mononuclear cells. Both PCR and RT-PCR analysis showed that resting human NK cells express Gal-3 mRNA, which can be modulated upon cytokine stimulation (100 U/ml IL–2 + 20 ng/ml IL-15) for different period of time (1–24 h). Western blot, cytofluorimetry, and confocal microscopy analysis clearly demonstrated that the Gal-3 gene can translate into the corresponding protein. From our results, resting NK cells, isolated from different healthy donors, can express high or low basal levels of Gal-3. In NK cells, Gal-3 was always intracellularly detected at both cytoplasm and nucleus levels, while never at the membrane surface, and its localization resulted independent from the cellular activation status. In addition, the intracellular Gal-3 can co-localize with perforin in exocytic vesicles. Cell treatment with a thiodigalactoside-based Gal-3 inhibitor (1–30 μM) slightly increased the number of degranulating NK cells, while it significantly increased the percentage of cells releasing high amounts of cytotoxic granules (+ 36 ± 3% vs. inhibitor-untreated cells at 30 μM Gal-3). In conclusion, our results demonstrate that human resting NK cells express Gal-3 at both gene and protein levels and that the Gal-3 expression can be modulated upon cytokine stimulation. In the same cells, Gal-3 always localizes intracellularly and functionally correlates with the degree of NK cell degranulation

    Selective inhibition of indoleamine and tryptophan 2,3-dioxygenases: Comparative study on kynurenine pathway in cell lines via LC-MS/MS-based targeted metabolomics

    Get PDF
    In the last decade, the kynurenine pathway, which is the primary metabolic route for tryptophan (TRP) catabolism, has sparked great interest in the pharmaceutical sciences due to its role in immune regulation and cancer immunoediting. In this context, the development of cell-based assays might represent a tool to: i) characterize the cell secretome according to cell types; ii) gain more insight into the role of kynurenines in different disease scenarios; iii) screen hIDO1 (human indoleamine 2,3-dioxygenase) inhibitors and evaluate their effect on downstream TRP-catabolizing enzymes. This paper reports a validated Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) method to simultaneously quantify TRP, L-kynurenine (KYN), xanthurenic acid (XA), 3-hydroxykynurenine (3OHKYN), kynurenic acid (KA), 3-hydroxyanthranilic acid (3OHAA), anthranilic acid (AA), 5-hydroxytryptamine (serotonin, 5HT) and tryptamine (TRYP) in Dulbecco's Modified Eagle and Eagle's Minimum Essential Media (DMEM and EMEM, respectively). The quantitative method was validated according to FDA, ICH and EMA guidelines, later applied: i) to assess the impact of selective inhibition of hIDO1 or hTDO (human tryptophan 2,3-dioxygenase) on the kynurenine pathway in A375 (melanoma), MDA-MB-231 (breast cancer), and U87 (glioblastoma) cell lines using multivariate analysis (MVA); ii) to determine the IC50 values of both well-known (i.e., epacadostat, linrodostat) and the novel hIDO1 inhibitor (i.e., BL5) in the aforementioned cell lines. The proposed LC-MS/MS method is reliable and robust. Furthermore, it is highly versatile and suitable for applications in the preclinical drug research and in vitro assays
    corecore