54 research outputs found

    Periodic operation of catalytic reactors - introduction and overview

    Get PDF
    A review, with 89 refs., is presented on the subject of periodic operation of catalytic reactors by compn. forcing. Possible objectives of this mode of reactor operation are increased conversion, improved selectivity, reduced catalyst deactivation and insight into mechanisms of reactor models. Several forcing strategies may be used: manipulating one or more reactant concns., or interspersing pulses of inerts between pulses of reactants. These strategies are distinct from the variables in periodic operation, i.e., frequency, wave shape, amplitude, and phase lag. Lab.-scale equipment for periodic forcing makes use of single reactors along with the control of reactant and/or diluent flows. On an industrial scale, two catalyst beds are used, each operating with different feeds under different conditions. Catalyst transfers between the beds. A large literature has developed over the 25 yr since periodic operation was first proposed. [on SciFinder (R)

    Scaling Parameters for Dynamic Diffusion-Reaction over Porous Catalysts

    Full text link
    The effect of diffusion resistance in porous solid catalysts on reaction rate during periodic cycling of CO concentration is shown for CO oxidation over Pt/Al2O3 by numerical simulation. At some cycling frequencies, the average reaction rate during cycling is higher than the steady-state rate at the mean CO concentration, as expected for this nonlinear, reactant-inhibited reaction. In order to identify major aspects of dynamic diffusion-reaction behavior, a simple kinetic mechanism that shows the main features of CO oxidation and other reactions with significant inhibition by reactants is investigated. A single dimensionless parameter group, the dynamic diffusion coefficient, is added when going from steady-state to unsteady-state diffusion-reaction equations. In the dynamic diffusion coefficient, the rate at which the gas-phase reactant diffuses is reduced by the surface adsorption capacity of the catalyst. The frequency at which the peak average rate occurs is controlled by the dynamic diffusion coefficient

    Wärmedurchgang in waagerechten Flüssigkeitsschichten

    No full text
    • …
    corecore