81 research outputs found

    Indigenous knowledges and development: a postcolonial caution

    Get PDF
    As a result of the failure of formal top-down development, there has recently been increased interest in the possibilities of drawing upon the indigenous knowledges of those in the communities involved, in an attempt to produce more effective development strategies. The concept of indigenous knowledge calls for the inclusion of local voices and priorities, and promises empowerment through ownership of the process. However, there has been little critical examination of the ways in which indigenous knowledges have been included in the development process. Drawing upon postcolonial theory, this article suggests that indigenous knowledges are often drawn into development by both theorists and development institutions in a very limited way, failing to engage with other ways of perceiving development, and thus missing the possibility of devising more challenging alternatives

    Observed NO/NO_2 Ratios in the Upper Troposphere Imply Errors in NO-NO_2-O_3 Cycling Kinetics or an Unaccounted NO_x Reservoir

    Get PDF
    Observations from the SEAC^4RS aircraft campaign over the southeast United States in August–September 2013 show NO/NO_2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NO_x reservoir species, presumably organic, decomposing thermally to NO_2 in the instrument. The NO_2 instrument corrects for this artifact from known labile HNO_4 and CH_3O_2NO_2 NO_x reservoirs. To bridge the gap between measured and simulated NO_2, additional unaccounted labile NO_x reservoir species would have to be present at a mean concentration of ~40 ppt for the SEAC^4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low‐temperature rate constant for the NO + O_3 reaction (30% 1‐σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO_2 photolysis (20% 1‐σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO_2 columns

    Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir

    Get PDF
    Observations from the SEAC4RS aircraft campaign over the southeast United States in August-September 2013 show NO/NO2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NOx reservoir species, presumably organic, decomposing thermally to NO2 in the instrument. The NO2 instrument corrects for this artifact from known labile HNO4 and CH3O2NO2 NOx reservoirs. To bridge the gap between measured and simulated NO2, additional unaccounted labile NOx reservoir species would have to be present at a mean concentration of ~40 ppt for the SEAC4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low-temperature rate constant for the NO + O3 reaction (30% 1-σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO2 photolysis (20% 1-σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO2 columns

    Inconsistency of ammonium–sulfate aerosol ratios with thermodynamic models in the eastern US: a possible role of organic aerosol

    Get PDF
    Thermodynamic models predict that sulfate aerosol (S(VI)  ≡  H2SO4(aq) + HSO4−+ SO42−) should take up available ammonia (NH3) quantitatively as ammonium (NH4+) until the ammonium sulfate stoichiometry (NH4)2SO4 is close to being reached. This uptake of ammonia has important implications for aerosol mass, hygroscopicity, and acidity. When ammonia is in excess, the ammonium–sulfate aerosol ratio R =  [NH4+] ∕ [S(VI)] should approach 2, with excess ammonia remaining in the gas phase. When ammonia is in deficit, it should be fully taken up by the aerosol as ammonium and no significant ammonia should remain in the gas phase. Here we report that sulfate aerosol in the eastern US in summer has a low ammonium–sulfate ratio despite excess ammonia, and we show that this is at odds with thermodynamic models. The ammonium–sulfate ratio averages only 1.04 ± 0.21 mol mol−1 in the Southeast, even though ammonia is in large excess, as shown by the ammonium–sulfate ratio in wet deposition and by the presence of gas-phase ammonia. It further appears that the ammonium–sulfate aerosol ratio is insensitive to the supply of ammonia, remaining low even as the wet deposition ratio exceeds 6 mol mol−1. While the ammonium–sulfate ratio in wet deposition has increased by 5.8 % yr−1 from 2003 to 2013 in the Southeast, consistent with SO2 emission controls, the ammonium–sulfate aerosol ratio decreased by 1.4–3.0 % yr−1. Thus, the aerosol is becoming more acidic even as SO2 emissions decrease and ammonia emissions stay constant; this is incompatible with simple sulfate–ammonium thermodynamics. A tentative explanation is that sulfate particles are increasingly coated by organic material, retarding the uptake of ammonia. Indeed, the ratio of organic aerosol (OA) to sulfate in the Southeast increased from 1.1 to 2.4 g g−1 over the 2003–2013 period as sulfate decreased. We implement a simple kinetic mass transfer limitation for ammonia uptake to sulfate aerosols in the GEOS-Chem chemical transport model and find that we can reproduce both the observed ammonium–sulfate aerosol ratios and the concurrent presence of gas-phase ammonia. If sulfate aerosol becomes more acidic as OA ∕ sulfate ratios increase, then controlling SO2 emissions to decrease sulfate aerosol will not have the co-benefit of suppressing acid-catalyzed secondary organic aerosol (SOA) formation

    Observed NO/NO_2 Ratios in the Upper Troposphere Imply Errors in NO-NO_2-O_3 Cycling Kinetics or an Unaccounted NO_x Reservoir

    Get PDF
    Observations from the SEAC^4RS aircraft campaign over the southeast United States in August–September 2013 show NO/NO_2 concentration ratios in the upper troposphere that are approximately half of photochemical equilibrium values computed from Jet Propulsion Laboratory (JPL) kinetic data. One possible explanation is the presence of labile NO_x reservoir species, presumably organic, decomposing thermally to NO_2 in the instrument. The NO_2 instrument corrects for this artifact from known labile HNO_4 and CH_3O_2NO_2 NO_x reservoirs. To bridge the gap between measured and simulated NO_2, additional unaccounted labile NO_x reservoir species would have to be present at a mean concentration of ~40 ppt for the SEAC^4RS conditions (compared with 197 ppt for NOx). An alternative explanation is error in the low‐temperature rate constant for the NO + O_3 reaction (30% 1‐σ uncertainty in JPL at 240 K) and/or in the spectroscopic data for NO_2 photolysis (20% 1‐σ uncertainty). Resolving this discrepancy is important for understanding global budgets of tropospheric oxidants and for interpreting satellite observations of tropospheric NO_2 columns

    Cognitive and affective perspective-taking in conduct-disordered children high and low on callous-unemotional traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deficits in cognitive and/or affective perspective-taking have been implicated in Conduct-Disorder (CD), but empirical investigations produced equivocal results. Two factors may be implicated: (a) distinct deficits underlying the antisocial conduct of CD subgroups, (b) plausible disjunction between cognitive and affective perspective-taking with subgroups presenting either cognitive or affective-specific deficits.</p> <p>Method</p> <p>This study employed a second-order false-belief paradigm in which the cognitive perspective-taking questions tapped the character's thoughts and the affective perspective-taking questions tapped the emotions generated by these thoughts. Affective and cognitive perspective-taking was compared across three groups of children: (a) CD elevated on Callous-Unemotional traits (<it>CD-high-CU</it>, <it>n </it>= 30), (b) CD low on CU traits (<it>CD-low-CU</it>, <it>n </it>= 42), and (c) a 'typically-developing' comparison group (<it>n </it>= 50), matched in age (7.5 – 10.8), gender and socioeconomic background.</p> <p>Results</p> <p>The results revealed deficits in <it>CD-low-CU </it>children for both affective and cognitive perspective-taking. In contrast <it>CD-high-CU </it>children showed relative competency in cognitive, but deficits in affective-perspective taking, a finding that suggests an affective-specific defect and a plausible dissociation of affective and cognitive perspective-taking in <it>CD-high-CU </it>children.</p> <p>Conclusion</p> <p>Present findings indicate that deficits in cognitive perspective-taking that have long been implicated in CD appear to be characteristic of a subset of CD children. In contrast affective perspective-taking deficits characterise both CD subgroups, but these defects seem to be following diverse developmental paths that warrant further investigation.</p

    Gender, gender role identity, and children's reported feelings toward the same and opposite sex

    Full text link
    The present study explored the relative importance of gender role identity, gender role attitudes, and biological gender in determining the intensity of anger, disgust, hurt, envy, fear, pity, and liking reported toward same- and opposite-sex children. Sixty male and 60 female 6–12-year-old children reported on the intensity of emotions that a hypothetical child would experience toward same- and opposite-sex children in various situations. The Children's Personal Attitudes Questionnaire, the Children's Attitudes toward Women Scale, and a self-reported toy preference measure were used to assess gender role identity and attitudes. The results indicated that girls were more angry at males than at females, and that both sexes tended to be more hurt and disgusted by opposite-sex than by same-sex children. Girls also tended to report more fear than did boys, and both sexes tended to report more fear of males than of females. Most importantly, gender role identity and attitudes accounted for more of the variance in predicting the quality of reported emotions than did biological gender. Biological gender predicted to only one feeling: pity toward males, after the variance accounted for by the gender role traits was removed. In general, both boys and girls who scored highly on feminine gender role identity were both communal and vulnerable in their reported emotions (high in reported liking, fear, and hurt). Children's reported feelings toward the same- and opposite-sex children seemed to be based on the evaluation of whether other children's biological gender differed from the children's own gender role identity characteristics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45596/1/11199_2004_Article_BF00289226.pd
    corecore