5,311 research outputs found

    Alternate wet/dry irrigation in rice cultivation: a practical way to save water and control malaria and Japanese encephalitis?

    Get PDF
    Water management / Water scarcity / Water use efficiency / Water conservation / Irrigated farming / Waterborne diseases / Rice / Malaria / Disease vectors / Productivity / Flood irrigation / Environmental control / Climate / China / East Africa / India / Indonesia / Japan / Philippines / Portugal / USA

    Calculation of Densities of States and Spectral Functions by Chebyshev Recursion and Maximum Entropy

    Full text link
    We present an efficient algorithm for calculating spectral properties of large sparse Hamiltonian matrices such as densities of states and spectral functions. The combination of Chebyshev recursion and maximum entropy achieves high energy resolution without significant roundoff error, machine precision or numerical instability limitations. If controlled statistical or systematic errors are acceptable, cpu and memory requirements scale linearly in the number of states. The inference of spectral properties from moments is much better conditioned for Chebyshev moments than for power moments. We adapt concepts from the kernel polynomial approximation, a linear Chebyshev approximation with optimized Gibbs damping, to control the accuracy of Fourier integrals of positive non-analytic functions. We compare the performance of kernel polynomial and maximum entropy algorithms for an electronic structure example.Comment: 8 pages RevTex, 3 postscript figure

    Fast algorithm for calculating two-photon absorption spectra

    Full text link
    We report a numerical calculation of the two-photon absorption coefficient of electrons in a binding potential using the real-time real-space higher-order difference method. By introducing random vector averaging for the intermediate state, the task of evaluating the two-dimensional time integral is reduced to calculating two one-dimensional integrals. This allows the reduction of the computation load down to the same order as that for the linear response function. The relative advantage of the method compared to the straightforward multi-dimensional time integration is greater for the calculation of non-linear response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March, 199

    Consistent Application of Maximum Entropy to Quantum-Monte-Carlo Data

    Full text link
    Bayesian statistics in the frame of the maximum entropy concept has widely been used for inferential problems, particularly, to infer dynamic properties of strongly correlated fermion systems from Quantum-Monte-Carlo (QMC) imaginary time data. In current applications, however, a consistent treatment of the error-covariance of the QMC data is missing. Here we present a closed Bayesian approach to account consistently for the QMC-data.Comment: 13 pages, RevTeX, 2 uuencoded PostScript figure

    Cardiac output during cardiopulmonary resuscitation at various compression rates and durations

    Get PDF
    Cardiac output during cardiopulmonary resuscitation (CPR) was measured by a modified indicator-dilution technique in 20 anesthetized dogs (6-12 kg) during repeated 1- to 2-min episodes of electrically induced ventricular fibrillation and CPR, produced by a mechanical chest compressor and ventilator. With compression rates from 20 to 140/min and compression durations (duty cycles) from 10 to 90% of cycle time, cardiac output (CO) was predicted by the equation: , where CR is compression rate, DC is duty cycle, SVmax (19 ml) is the effective capacity of the pumping chamber, and kl (0.00207 min) and k2 (0.00707 min) are ejection and filling constants. This expression predicts maximal CO for DC = 0.40 and CR = 126/min as well as 90-100% of maximal CO for 0.3 \u3c DC \u3c 0.5 and 70 \u3c CR \u3c 150/min. Such mathematical analysis may prove useful in the optimization of CPR

    The Differential Evaluation of Religious Risk Rituals Involving Serpents in Two Cultures

    Get PDF
    While serpent symbolism is common in many religious traditions, few traditions have including the actual handling of serpents that can maim and kill in their rituals. Two exceptions are various Manasa sects common in India and the serpent handlers of Appalachia in America. We presented brief descriptions of each of these traditions along with videos of the handling of serpents in each tradition under three degrees of risk, video with no serpents, video with serpents but no bites, video with serpents and bites. Under a fourth condition only for the Appalachian handlers, the video showed a handler dying from a bite. American, largely Christian participants rated assessed each condition for ritual quality and perceived legitimacy. As predicted, serpent handling in America was perceived as less legitimate than serpent handling in India. No differences were found between perceived legitimacy and level of risk except in the condition where a handler was seen dying from a bite

    piggyBac Transposon Somatic Mutagenesis with an Activated Reporter and Tracker (PB-SMART) for Genetic Screens in Mice

    Get PDF
    Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB) transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease
    corecore