32 research outputs found

    Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry

    Get PDF
    The way to decarbonization will be characterized by the huge production of hydrogen through sustainable routes. Thus, the basic production way is water electrolysis sustained by renewable energy sources allowing for obtaining "green hydrogen". The present paper reviews the main available technologies for the water electrolysis finalized to the hydrogen production. We describe the fundamental of water electrolysis and the problems related to purification and/or desalinization of water before electrolysis. As a matter of fact, we describe the energy efficiency issues with particular attention to the potential application in the steel industry. The fundamental aspects related to the choice of high-temperature or low-temperature technologies are analyzed. Keywords: water electrolysis; ironmaking; steelmaking;

    Integration of Open Slag Bath Furnace with Direct Reduction Reactors for New‐Generation Steelmaking

    Full text link
    The present paper illustrates an innovative steel processing route developed by employing hydrogen direct reduced pellets and an open slag bath furnace. The paper illustrates the direct reduction reactor employing hydrogen as reductant on an industrial scale. The solution allows for the production of steel from blast furnace pellets transformed in the direct reduction reactor. The reduced pellets are then melted in open slag bath furnaces, allowing carburization for further refining. The proposed solution is clean for the decarbonization of the steel industry. The kinetic, chemical and thermodynamic issues are detailed with particular attention paid to the slag conditions. The proposed solution is also supported by the economic evaluation compared to traditional route

    Microstructural, Mechanical and Wear Properties of Atmospheric Plasma-Sprayed and High-Velocity Oxy-Fuel AlCoCrFeNi Equiatomic High-Entropy Alloys (HEAs) Coatings

    Get PDF
    In this investigation, atmospheric plasma spray (APS) and high-velocity oxy-fuel (HVOF) techniques were used to produce AlCoCrFeNi coatings. High-entropy alloys (HEAs), due to their mechanical, chemical, and physical properties are capturing the attention of the international scientific community. Starting feedstock powders were characterized in terms of size, phase, and size, and corrosion test in NaCl, ball on disk, rubber wheel, and jet erosion tests was carried out on the obtained coatings. The results of the tribological investigation show that in the case of APS coatings, corrosion and wear behavior depend on the microstructure phases of the coating, as well as the amount of oxides. In particular, the wear morphology of APS surfaces is characterized by brittle fracture, with the presence of pores, cracks, and grooves. For HVOF coatings, further investigations on process parameters are needed because of the poor adhesion strength between the coating and the substrate. Anyway, the obtained corrosion resistance of HVOF coating is greater than that of the C steel substrate used to benchmark the results, and in addition, it ensures better performances in rubber wheel and jet erosion tests, but its wear resistance in the ball-ondisk test is worse because of the debris remaining in the wear track

    Improving the Wear and Corrosion Resistance of Maraging Part Obtained by Cold Gas Spray Additive Manufacturing

    Get PDF
    The use of the cold gas spray (CGS) process as a metal additive manufacturing (MAM) technique for metallic part production has been deeply studied recently, mainly due to its advantages over other MAM techniques. CGS MAM is a high-productivity technique with a very low level of particle oxidation, microstructural changes, phase transformations, or deleterious residual thermal stresses in the part. The use of CGS MAM to produce maraging parts represents a gain for the industry by saving machining time and preventing raw material waste. Its wear resistance and corrosion behavior were evaluated in this work and were compared with cermet coatings deposited by high-velocity oxy-fuel (HVOF) on the CGS MAM maraging. This work presents the innovative and effective combination of different thermal spraying processes and materials to obtain MAM maraging parts with higher wear resistance, evaluating abrasion, sliding, and water erosion wear type

    The influence of the powder characteristics on 316L stainless steel coatings sprayed by cold gas spray

    Get PDF
    Thermally sprayed 316L stainless steel coatings are commonly used on metallic structures due to their corrosion and wear resistance when compared to carbon steel. Cold Gas Spray (CGS) is a convenient thermal spray process to deposit 316L coatings, producing thick and very dense coatings, with almost no deleterious changes on the feedstock properties to the coating condition. The powder characteristics have influence on the microstructure of the coating, such as porosity and oxide contents, which alter its corrosion and wear behavior. CGS is an efficient technique to reduce the problems associated with material melting commonly found in other conventional thermal spray methods. In this work, different 316L powders, produced by different manufacturers, were deposited by CGS, applying the same equipment and parameters, with the objective to evaluate the relation between the powders' characteristics and coating properties. Their microstructure, adherence, hardness, as well as the performance on corrosion and wear testing were evaluated. The water atomized powders presented in general better results than gas atomized powders

    Microstructural, Mechanical and Wear Behavior of HVOF and Cold-Sprayed High-Entropy Alloys (HEAs) Coatings

    Full text link
    HEAs powders, unlike standard alloys which contain one or two base elements, are new alloys that contain multiple elements in the same quantity. These materials have outstanding physical and mechanical properties and for this reason, are of great interest in the material science community for their application in advanced industrial sectors. In this investigation, cold spray (CS) and high-velocity oxy fuel (HVOF) processes were used to deposit Cantor alloy (FeCoCrNiMn) coatings. Starting feedstock powders were thoroughly characterized in terms of size, shape, phase and elastic modulus. For CS process, the coating deposition efficiency and porosity could be optimized by varying gas pressure, gas temperature and stand-off distance. In the case of HVOF process, stand-off distance influenced the thickness of the coatings. Besides, on the optimized CS and HVOF coatings, corrosion tests in 3.5% NaCl solution, as well as rubber wheel, ball on disk and jet erosion tests were carried out to evaluate their wear behavior. Also, to benchmark the corrosion and wear behavior of optimized coatings, the results were compared to 316L and C-Steel bulks. The tribological study shows that Cantor alloy coatings deposited via CS and HVOF are promising to protect parts and components in a harsh environment

    Kaolinite structural modifications induced by mechanical activation

    Full text link
    This study presents novel characterisation techniques to evaluate the effects of mechanical activation (MA) on the kaolinite structure. MA was achieved with a planetary ball mill at various times and rotation speeds to get different activation degrees. A thermal activation was performed for comparison purposes. The results of X-ray diffraction and selective area electron diffraction demonstrated that the kaolinite content was significantly reduced as the amorphous phase increased. Illite, K-feldspars, and quartz impurities were extensively modified as well. The morphology of kaolinite particles is altered. Furthermore, the mechanical treatments significantly affected the hydroxyls, losing bonding strength with the structure, as stated with 1H nuclear magnetic resonance. Thermogravimetric analysis and infrared spectroscopy also revealed that water molecules could be formed due to the reaction of hydroxyls between them or with the atmosphere. This work improves the comprehension of MA on kaolin by clearly confirming with new techniques that the mechanical treatments distort the kaolinite structure

    Fatigue bending behavior of cold-sprayed nickel-based superalloy coatings

    Get PDF
    Cold-sprayed Ni-based superalloy coatings offer new possibilities for manufacturing and repairing damaged components, such as gas turbine blades or other parts of aircraft engines. This development shines a new light on the conventional additive manufacturing technologies and significantly broadens application fields of cold spray. The idea is that cold spray can contribute to improving the fatigue properties of manufacturing and repaired components. This study deals with the analysis of the microstructural and mechanical properties of IN625 cold-sprayed coatings on V-notched carbon steel substrate. Process conditions of 1000 degrees C and 50bar were employed to produce coatings in V-notched (60 degrees and 90 degrees) samples in order to evaluate the fatigue crack behavior of the sprayed material. Bending tests were carried out in order to evaluate the crack propagation in the coatings during cyclic loading. The K factor was quantified for the two different notch geometries. After fatigue tests, the cracking mechanisms were observed through SEM. Optical microscopy, nanoindentation as a function of coating/substrate distance and corrosion tests were performed. Porosity measurements through image analyses were done to characterize the coatings' quality. The results achieved demonstrate that cold spray deposition and repair can contribute to resistance and to the increase in the global fatigue life of cracked structures

    Nanoengineered graphene-reinforced coating for leading edge protection of wind turbine blades

    Get PDF
    Possibilities of the development of new anti-erosion coatings for wind turbine blade surface protection on the basis of nanoengineered polymers are explored. Coatings with graphene and hybrid nanoreinforcements are tested for their anti-erosion performance, using the single point impact fatigue testing (SPIFT) methodology. It is demonstrated that graphene and hybrid (graphene/silica) reinforced polymer coatings can provide better erosion protection with lifetimes up to 13 times longer than non-reinforced polyurethanes. Thermal effects and energy dissipation during the repeated soft impacts on the blade surface are discussed

    Graphene/sol–gel modified polyurethane coating for wind turbine blade leading edge protection : properties and performance

    Get PDF
    The development of two novel elastomeric erosion resistant coatings for the protection of wind turbine blades is presented. The coatings are prepared by modifying polyurethane (PU) with (i) hydroxyl functionalised graphene nanoparticles (f-GNP) and (ii) f-GNP and a hydrophobic silica-based sol–gel (SG). Tensile, monotonic and cyclic compression and tearing tests have been conducted on the neat PU and the two newly developed elastomeric PU nanocomposites (PU + GNP and PU + GNP + SG) to allow their properties to be compared. The test results showed that the mechanical properties of PU and the modified PUs have strong dependency on temperature, strain rate and nanoparticles loading and addition of GNP and SG to PU improved the mechanical properties. Compared to PU, Young’s modulus and modulus of toughness of PU + GNP + SG increased 95% and 124%, respectively. The PU + GNP nanocomposite displayed the highest tearing strength and the PU + GNP + SG nanocomposite showed the highest elongation at break. An investigation of the microstructures of the modified PUs by FTIR, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDX) are discussed. Hydrophobicity of the PU and developed PU nanocomposites are reported by measuring their water droplet contact angles and their free surface energies
    corecore