554 research outputs found

    Light robust co-optimization of energy and reserves in the day-ahead electricity market

    Get PDF
    To accommodate the stochasticity of variable renewable energy sources (VRES) while efficiently dispatching generation resources and procuring adequate reserves, previous research proposed co-optimizing energy and reserves in the day-ahead (DA) using various uncertainty-based mechanisms. However, the co-optimized markets based on these mechanisms exhibit implementation limitations related to their high computational burden, complex customized solution algorithms, and over-conservative solutions. To address these shortcomings, this paper proposes a practical light robust optimization (LR) approach for the DA co-optimization of energy and reserves. The method results in a linear market clearing mechanism that easily enables the control of the robustness level of the solution through a tunable conservativeness parameter. In addition, the paper explores three different formulations for specifying the system reserve requirements considering, namely, fixed reserve requirements (LRF1), variable reserve requirements based on system uncertainty (LRF2), and a combined approach (LRF3). The formulations integrate the uncertainty from VRES in the market setting using a new bid format called uncertainty bid. The three formulations are then compared using a case study. The numerical results show the effects of the variation of the conservativeness parameter and the reserve requirements on the total socio-economic welfare (SEW), dispatched energy quantities, anticipated activation costs, and procured reserves. Moreover, the analyses showcase that sizing reserves based on system uncertainty (in LRF2) results in a 27%–61% decrease in reserve procurement costs when compared with LRF1, while the combined approach (in LRF3) results in a better performance than LRF2 in terms of reserve activation costs, with costs 61%–263% lower than in LRF2

    A Light Robust Optimization Approach for Uncertainty-based Day-ahead Electricity Markets

    Get PDF
    The traditional deterministic day-ahead (DA) market clearing does not accommodate the uncertainty from variable renewable energy sources, resulting in an increasing activation of expensive reserves and curtailment events. Robust optimization (RO) has been proposed to mitigate this uncertainty. However, as RO considers worst-case scenarios, it results in highly conservative solutions. This paper proposes a light robust (LR) DA market clearing mechanism to address these shortcomings, controlling the trade-off between robustness and economic efficiency. This mechanism integrates the uncertainty from renewables in its formulation and allows the derivation of coherent market prices. The optimal bidding strategy of the stochastic participants is mathematically derived, while considering the expectation on the system imbalance. A comparison with the deterministic formulation proves that stochastic producers can economically benefit from the proposed mechanism, encouraging their participation. The derived analytical results are corroborated by numerical results from a case study based on the IEEE 24-node test system

    A Light Robust Optimization Approach for Uncertainty-based Day-ahead Electricity Markets

    Get PDF
    The traditional deterministic day-ahead (DA) market clearing does not accommodate the uncertainty from variable renewable energy sources, resulting in an increasing activation of expensive reserves and curtailment events. Robust optimization (RO) has been proposed to mitigate this uncertainty. However, as RO considers worst-case scenarios, it results in highly conservative solutions. This paper proposes a light robust (LR) DA market clearing mechanism to address these shortcomings, controlling the trade-off between robustness and economic efficiency. This mechanism integrates the uncertainty from renewables in its formulation and allows the derivation of coherent market prices. The optimal bidding strategy of the stochastic participants is mathematically derived, while considering the expectation on the system imbalance. A comparison with the deterministic formulation proves that stochastic producers can economically benefit from the proposed mechanism, encouraging their participation. The derived analytical results are corroborated by numerical results from a case study based on the IEEE 24-node test system

    A global analysis of Y-chromosomal haplotype diversity for 23 STR loci

    Get PDF
    In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore