41,303 research outputs found

    The effect of spatial resolution on optical and near-IR studies of stellar clusters: Implications for the origin of the red excess

    Full text link
    Recent ground based near-IR studies of stellar clusters in nearby galaxies have suggested that young clusters remain embedded for 7-10Myr in their progenitor molecular cloud, in conflict with optical based studies which find that clusters are exposed after 1-3Myr. Here, we investigate the role that spatial resolution plays in this apparent conflict. We use a recent catalogue of young (50005000~\msun) clusters in the nearby spiral galaxy, M83, along with Hubble Space Telescope (HST) imaging in the optical and near-IR, and ground based near-IR imaging, to see how the colours (and hence estimated properties such as age and extinction) are affected by the aperture size employed, in order to simulate studies of differing resolution. We find that the near-IR is heavily affected by the resolution, and when aperture sizes >40>40~pc are used, all young/blue clusters move red-ward in colour space, which results in their appearance as heavily extincted clusters. However, this is due to contamination from nearby sources and nebular emission, and is not an extinction effect. Optical colours are much less affected by resolution. Due to the larger affect of contamination in the near-IR, we find that, in some cases, clusters will appear to show near-IR excess when large (>20>20~pc) apertures are used. Our results explain why few young (<6<6~Myr), low extinction (\av < 1~mag) clusters have been found in recent ground based near-IR studies of cluster populations, while many such clusters have been found in higher resolution HST based studies. Additionally, resolution effects appear to (at least partially) explain the origin of the near-IR excess that has been found in a number of extragalactic YMCs.Comment: 8 pages, 5 figures, accepted for publication in MNRA

    Diffusive Radiation in One-dimensional Langmuir Turbulence

    Full text link
    We calculate spectra of radiation produced by a relativistic particle in the presence of one-dimensional Langmuir turbulence which might be generated by a streaming instability in the plasma, in particular, in the shock front or at the shock-shock interactions. The shape of the radiation spectra is shown to depend sensitively on the angle between the particle velocity and electric field direction. The radiation spectrum in the case of exactly transverse particle motion is degenerate and similar to that of spatially uniform Langmuir oscillations. In case of oblique propagation, the spectrum is more complex, it consists of a number of power-law regions and may contain a distinct high-frequency spectral peak. %at \omega=2\omega\pe \gamma^2. The emission process considered is relevant to various laboratory plasma settings and for astrophysical objects as gamma-ray bursts and collimated jets.Comment: 4 pages, 1 figure, accepted for Phys. Rev.

    Transport Processes in Metal-Insulator Granular Layers

    Full text link
    Tunnel transport processes are considered in a square lattice of metallic nanogranules embedded into insulating host to model tunnel conduction in real metal/insulator granular layers. Based on a simple model with three possible charging states (±\pm, or 0) of a granule and three kinetic processes (creation or recombination of a ±\pm pair, and charge transfer) between neighbor granules, the mean-field kinetic theory is developed. It describes the interplay between charging energy and temperature and between the applied electric field and the Coulomb fields by the non-compensated charge density. The resulting charge and current distributions are found to be essentially different in the free area (FA), between the metallic contacts, or in the contact areas (CA), beneath those contacts. Thus, the steady state dc transport is only compatible with zero charge density and ohmic resistivity in FA, but charge accumulation and non-ohmic behavior are \emph{necessary} for conduction over CA. The approximate analytic solutions are obtained for characteristic regimes (low or high charge density) of such conduction. The comparison is done with the measurement data on tunnel transport in related experimental systems.Comment: 10 pages, 11 figures, 1 reference corrected, acknowlegments adde

    Quintessential inflation from 5D warped product spaces on a dynamical foliation

    Full text link
    Assuming the existence of a 5D purely kinetic scalar field on the class of warped product spaces we investigate the possibility of mimic both an inflationary and a quintessential scenarios on 4D hypersurfaces, by implementing a dynamical foliation on the fifth coordinate instead of a constant one. We obtain that an induced chaotic inflationary scenario with a geometrically induced scalar potential and an induced quasi-vacuum equation of state on 4D dynamical hypersurfaces is possible. While on a constant foliation the universe can be considered as matter dominated today, in a family of 4D dynamical hypersurfaces the universe can be passing for a period of accelerated expansion with a deceleration parameter nearly -1. This effect of the dynamical foliation results negligible at the inflationary epoch allowing for a chaotic scenario and becomes considerable at the present epoch allowing a quintessential scenario.Comment: 7 pages, 1 figure Accepted for publication in Modern Physics Letters

    Topology optimization for flextensional actuators

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76744/1/AIAA-1998-4951-939.pd

    Book Review: Postcolonial Worlds Apart

    Full text link

    Detecting New Physics from CP-violating phase measurements in B decays

    Get PDF
    The standard CKM model can be tested and New Physics detected using only CP-violating phase measurements in B decays. This requires the measurement of a phase factor which is small in the Standard Model, in addition to the usual large phases β\beta and γ\gamma. We also point out that identifying violations of the unitarity of the CKM matrix is rather difficult, and cannot be done with phase measurements alone.Comment: 6 pages, Latex, no figure
    corecore