77,269 research outputs found

    High harmonic generation in crystals using Maximally Localized Wannier functions

    Full text link
    In this work, the nonlinear optical response, and in particular, the high harmonic generation of semiconductors is addressed by using the Wannier gauge. One of the main problems in the time evolution of the Semiconductor Bloch equations resides in the fact that the dipole couplings between different bands can diverge and have a random phase along the reciprocal space and this leads to numerical instability. To address this problem, we propose the use of the Maximally Localized Wannier functions that provide a framework to map ab-initio calculations to an effective tight-binding Hamiltonian with great accuracy. We show that working in the Wannier gauge, the basis set in which the Bloch functions are constructed directly from the Wannier functions, the dipole couplings become smooth along the reciprocal space thus avoiding the problem of random phases. High harmonic generation spectrum is computed for a 2D monolayer of hBN as a numerical demonstration

    Inline self-diffraction dispersion-scan of over octave-spanning pulses in the single-cycle regime

    Get PDF
    We present an implementation of dispersion-scan based on self-diffraction (SD d-scan) and apply it to the measurement of over octave-spanning sub-4-fs pulses. The results are compared with second-harmonic generation (SHG) d-scan. The efficiency of the SD process is derived theoretically and compared with the spectral response retrieved by the d-scan algorithm. The new SD d-scan has a robust inline setup and enables measuring pulses with over-octave spectra, single-cycle durations and wavelength ranges beyond those of SHG crystals, such as the ultraviolet and the deep-ultraviolet.Comment: 8 pages, 5 figure

    Simulation of Chua's Circuit by Means of Interval Analysis

    Full text link
    The Chua's circuit is a paradigm for nonlinear scientific studies. It is usually simulated by means of numerical methods under IEEE 754-2008 standard. Although the error propagation problem is well known, little attention has been given to the relationship between this error and inequalities presented in Chua's circuit model. Taking the average of round mode towards +∞+\infty and −∞-\infty, we showed a qualitative change on the dynamics of Chua's circuit.Comment: 6th International Conference on Nonlinear Science and Complexity - S\~ao Jos\'e dos Campos, 2016, p. 1-

    SLIC Based Digital Image Enlargement

    Full text link
    Low resolution image enhancement is a classical computer vision problem. Selecting the best method to reconstruct an image to a higher resolution with the limited data available in the low-resolution image is quite a challenge. A major drawback from the existing enlargement techniques is the introduction of color bleeding while interpolating pixels over the edges that separate distinct colors in an image. The color bleeding causes to accentuate the edges with new colors as a result of blending multiple colors over adjacent regions. This paper proposes a novel approach to mitigate the color bleeding by segmenting the homogeneous color regions of the image using Simple Linear Iterative Clustering (SLIC) and applying a higher order interpolation technique separately on the isolated segments. The interpolation at the boundaries of each of the isolated segments is handled by using a morphological operation. The approach is evaluated by comparing against several frequently used image enlargement methods such as bilinear and bicubic interpolation by means of Peak Signal-to-Noise-Ratio (PSNR) value. The results obtained exhibit that the proposed method outperforms the baseline methods by means of PSNR and also mitigates the color bleeding at the edges which improves the overall appearance.Comment: 6 page

    Influence of Refractory Periods in the Hopfield model

    Full text link
    We study both analytically and numerically the effects of including refractory periods in the Hopfield model for associative memory. These periods are introduced in the dynamics of the network as thresholds that depend on the state of the neuron at the previous time. Both the retrieval properties and the dynamical behaviour are analyzed.Comment: Revtex, 7 pages, 7 figure

    Decay of distance autocorrelation and Lyapunov exponents

    Get PDF
    This work presents numerical evidences that for discrete dynamical systems with one positive Lyapunov exponent the decay of the distance autocorrelation is always related to the Lyapunov exponent. Distinct decay laws for the distance autocorrelation are observed for different systems, namely exponential decays for the quadratic map, logarithmic for the H\'enon map and power-law for the conservative standard map. In all these cases the decay exponent is close to the positive Lyapunov exponent. For hyperbolic conservative systems, the power-law decay of the distance autocorrelation tends to be guided by the smallest Lyapunov exponent.Comment: 7 pages, 8 figure

    Dynamical Evolution of an Unstable Gravastar with Zero Mass

    Full text link
    Using the conventional gravastar model, that is, an object constituted by two components where one of them is a massive infinitely thin shell and the other one is a de Sitter interior spacetime, we physically interpret a solution characterized by a zero Schwarzschild mass. No stable gravastar is formed and it collapses without forming an event horizon, originating what we call a massive non-gravitational object. The most surprise here is that the collapse occurs with an exterior de Sitter vacuum spacetime. This creates an object which does not interact gravitationally with an outside test particle and it may evolve to a point-like topological defect.Comment: 8 pages, 10 figures, to appear in Astrophysics and Space Scienc
    • …
    corecore