21 research outputs found

    Automatic Control with Experiments

    Get PDF
    Everybody has been a part of a control system at some time. Some examples of this are when driving a car, balancing a broomstick on a hand, walking or standing up without falling, taking a glass to drink water, and so on. These control systems, however,arenotautomaticcontrolsystems,asapersonisrequiredtoperformarole in it. To explain this idea, in this section some more technical examples of control systems are described in which a person performs a rol

    Implementation of a Controller to Eliminate the Limit Cycle in the Inverted Pendulum on a Cart

    No full text
    A frequency response-based linear controller is implemented to regulate the inverted pendulum on a cart at the inverted position. The objective is to improve the performance of the control system by eliminating the limit cycle generated by the dead-zone, induced by static friction, at the actuator of the mechanism. This control strategy has been recently introduced and applied by the authors to eliminate the limit cycle in the Furuta pendulum and the pendubot systems. Hence, the main aim of the present paper is to study the applicability of the control strategy to eliminate the limit cycle in the inverted pendulum on a cart. The successful results that are obtained in experiments corroborate that the approach introduced by the authors to eliminate the limit cycle in the Furuta pendulum and pendubot is also valid for the inverted pendulum on a cart

    Deformaciones de un frente de onda

    No full text

    Modelado, simulación y construcción de un robot móvil de ruedas tipo diferencial

    No full text
    Into the study of the mobile robotics and its different configurations, it�s possible to find different applications, such as those for entertainment, medicine, militia, rescue systems or other planets exploration. With the looking for new technological trends, the study of the mobile robotics became really important in the academic area and it�s studied by students, teachers and investigators by the intention of getting more knowledge of this branch; even though not all these studies finish satisfactorily in the implementation of a physical prototype where it�s possible to test the different control laws so that the mobile realizes autonomous movements. In this article the modeling, simulation and construction of a differential wheels mobile robot, that will serve as a prototype to try different test of the automatic control theory, being possible in this way to take into the practice the theoretical concepts related to the mobile robotics of wheels, thus as the development of investigation in this area.Dentro el estudio de la robótica móvil y sus diferentes configuraciones es posible encontrar diversas aplicaciones que van desde el entretenimiento, medicina, milicia, sistemas de rescate, hasta la exploración en otros planetas. Con la búsqueda de nuevas tendencias tecnológicas, el estudio de la robótica móvil juega un papel muy importante en el área académica y es abordada por estudiantes, profesores e investigadores con el propósito de obtener un mayor conocimiento de esta rama; sin embargo no todos estos estudios concluyen satisfactoriamente en la implementación de un prototipo físico donde se pueda realizar las pruebas de distintas leyes de control para que el móvil realice movimientos autónomos. En el presente artículo se realiza el modelado, simulación y construcción de un robot móvil de ruedas tipo diferencial, que servirá como prototipo para realizar diferentes pruebas de la teoría de control automático, pudiendo de esta forma llevar a la práctica los conceptos teóricos relacionados con la robótica móvil, así como el desarrollo de investigación en esta área

    Desarrollo del modelo cinemático de un RMR a partir de las ecuaciones odométricas

    No full text
    The aim of this work is to obtain the kinematic model of a differential drive WMR considering the geometric disposition of their wheels; this is known as the odometric calculus. These equations will give us the position and orientation of the WMR from the lineal displacement of the wheels. It is shown that we can obtain the same kinematic model using these odometric equations as when using dynamics systems modeling of Euler-Lagrange.El objetivo de este trabajo es la obtención del modelo cinemático de un RMR de tipo diferencial en base a la geometría asociada a la disposición de sus ruedas, conocido como enfoque odométrico. Estas ecuaciones permiten conocer la posición y orientación del RMR a partir del desplazamiento lineal de las ruedas. Se muestra como a partir del enfoque odométrico se obtiene el mismo modelo que cuando se emplea el enfoque de modelado de sistemas dinámicos basados en el formalismo de Euler-Lagrange

    Una panorámica de los robots móviles

    No full text
    Aunque existe una amplia gama de robots y cada uno de ellos es digno de estudio, este trabajo aborda el área de la robótica móvil, específicamente los robots que utilizan como medio de locomoción ruedas. Se presenta una revisión en el estado del arte de los robots móviles desde su evolución pasando por las configuraciones más empleadas, los actuadores comúnmente utilizados y algunas técnicas de control que se han aplicado con el objetivo de conseguir cada vez mayor autonomía en los problemas de seguimiento de trayectoria y en la evasión de obstáculos.Although a wide range of robots exist and each one of them is worthy of study, this work approaches the mobile robotics area, specifically robots which used wheels for locomotion. A revision on the state of the art of mobile robots is presented, from its evolution through its configurations, the actuators commonly used and some control techniques that have been applied in order to get every time greater autonomy on the path following and obstacle avoidance problems

    Robust Tracking Controller for a DC/DC Buck-Boost Converter–Inverter–DC Motor System

    No full text
    This paper has two aims. The first is to develop a robust hierarchical tracking controller for the DC/DC Buck-Boost–inverter–DC motor system. This controller considers a high level control for the inverter–DC motor subsystems and a low level control for the DC/DC Buck-Boost converter subsystem. Such controls solve the tracking task associated with the angular velocity of the motor shaft and the output voltage of the converter, respectively, via the differential flatness approach. The second aim is to present a comparison of the robust hierarchical controller to a passive controller. This, with the purpose of showing that performance achieved with the hierarchical controller proposed in this paper, is better than the one achieved with the passive controller. Both controllers are experimentally implemented on a prototype of the DC/DC Buck-Boost–inverter–DC motor system by using Matlab-Simulink along with the DS1104 board from dSPACE. According to experimental results, the proposal in the present paper achieves a better performance than the passive controller

    Tracking Control for Mobile Robots Considering the Dynamics of All Their Subsystems: Experimental Implementation

    No full text
    The trajectory tracking task in a wheeled mobile robot (WMR) is solved by proposing a three-level hierarchical controller that considers the mathematical model of the mechanical structure (differential drive WMR), actuators (DC motors), and power stage (DC/DC Buck power converters). The highest hierarchical level is a kinematic control for the mechanical structure; the medium level includes two controllers based on differential flatness for the actuators; and the lowest hierarchical level consists of two average controllers also based on differential flatness for the power stage. In order to experimentally validate the feasibility of the proposed control scheme, the hierarchical controller is implemented via a Σ–Δ-modulator in a differential drive WMR prototype that we have built. Such an implementation is achieved by using MATLAB-Simulink and the real-time interface ControlDesk together with a DS1104 board. The experimental results show the effectiveness and robustness of the proposed control scheme
    corecore