73,917 research outputs found

    Quantum anisotropic Heisenberg chains with superlattice structure: a DMRG study

    Full text link
    Using the density matrix renormalization group technique, we study spin superlattices composed of a repeated pattern of two spin-1/2 XXZ chains with different anisotropy parameters. The magnetization curve can exhibit two plateaus, a non trivial plateau with the magnetization value given by the relative sizes of the sub-chains and another trivial plateau with zero magnetization. We find good agreement of the value and the width of the plateaus with the analytical results obtained previously. In the gapless regions away from the plateaus, we compare the finite-size spin gap with the predictions based on bosonization and find reasonable agreement. These results confirm the validity of the Tomonaga-Luttinger liquid superlattice description of these systems.Comment: 6 pages, 6 figure

    Radiative corrections in bumblebee electrodynamics

    Get PDF
    We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu-Goldstone boson) can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode can not be excluded from the effective theory.Comment: Revised version: contains some more elaborated interpretation of the results. Conclusions improve

    Perfil andrológico de touros nelore criados extensivamente no planalto e no Pantanal sul-mato-grossense.

    Get PDF
    bitstream/item/56426/1/CT100-lancado.pdfNa publicação: Juliana Corrêa Borges

    Piezoelectric actuators for bone mechanical stimulation: exploring the concept.

    Get PDF
    Arthroplasty is liable to cause intense changes on strain levels and distribution in the boné surrounding the implant, namely stress shielding. Several solutions have been proposed for this, namely design variations and development of controlled-stiffness implants. A new approach to this problem, with potential application to other orthopaedic problems and other medical fields, would be the development of smart implants integrating systems for bone mechanical stimulation. Ideally, the implant should presente sensing capability and the ability to maintain physiological levels of strain at the implant interface. Piezoelectric materials’ huge potential as a mean to produce direct mechanical stimulation lies on the possibility of producing stimuli at a high range of frequencies and in multiple combinations. The present in vitro and preliminary in vivo studies were a first step towards the validation of the concept
    corecore