48,178 research outputs found

    The fully kinetic Biermann battery and associated generation of pressure anisotropy

    Full text link
    The dynamical evolution of a fully kinetic, collisionless system with imposed background density and temperature gradients is investigated analytically. The temperature gradient leads to the generation of temperature anisotropy, with the temperature along the gradient becoming larger than that in the direction perpendicular to it. This causes the system to become unstable to pressure anisotropy driven instabilities, dominantly to electron Weibel. When both density and temperature gradients are present and non-parallel to each other, we obtain a Biermann-like linear in time magnetic field growth. Accompanying particle in cell numerical simulations are shown to confirm our analytical results.Comment: 5 pages, 2 figures, + Supplementary materials (4 pages, 2 figures

    Temperature dependence of antiferromagnetic susceptibility in ferritin

    Get PDF
    We show that antiferromagnetic susceptibility in ferritin increases with temperature between 4.2 K and 180 K (i. e. below the N\'{e}el temperature) when taken as the derivative of the magnetization at high fields (30×10430\times10^4 Oe). This behavior contrasts with the decrease in temperature previously found, where the susceptibility was determined at lower fields (5×1045\times10^4 Oe). At high fields (up to 50×10450 \times10^4 Oe) the temperature dependence of the antiferromagnetic susceptibility in ferritin nanoparticles approaches the normal behavior of bulk antiferromagnets and nanoparticles considering superantiferromagnetism, this latter leading to a better agreement at high field and low temperature. The contrast with the previous results is due to the insufficient field range used (<5×104< 5 \times10^4 Oe), not enough to saturate the ferritin uncompensated moment.Comment: 7 pages, 7 figures, accepted in Phys. Rev.

    The Levi-Civita spacetime

    Get PDF
    We consider two exact solutions of Einstein's field equations corresponding to a cylinder of dust with net zero angular momentum. In one of the cases, the dust distribution is homogeneous, whereas in the other, the angular velocity of dust particles is constant [1]. For both solutions we studied the junction conditions to the exterior static vacuum Levi-Civita spacetime. From this study we find an upper limit for the energy density per unit length σ\sigma of the source equal 12{1\over 2} for the first case and 14{1\over 4} for the second one. Thus the homogeneous cluster provides another example [2] where the range of σ\sigma is extended beyond the limit value 14{1\over 4} previously found in the literature [3,4]. Using the Cartan Scalars technics we show that the Levi-Civita spacetime gets an extra symmetry for σ=12\sigma={1\over 2} or 14{1\over 4}. We also find that the cluster of homogeneous dust has a superior limit for its radius, depending on the constant volumetric energy density ρ0\rho_0

    Effects of nanoscale spatial inhomogeneity in strongly correlated systems

    Full text link
    We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential viv_i can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction UiU_i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for reexamination of model calculations assuming spatial homogeneity.Comment: 5 pages, 1 table, 4 figures, to appear in PR

    Estabelecimento In Vitro de Erva-Mate (Ilex paraguariensis St. Hil.).

    Get PDF
    bitstream/item/31493/1/comunicado-215.pd
    • 

    corecore