25 research outputs found

    Dispersion-engineered multi-pass cell for single-stage post-compression of an ytterbium laser

    Get PDF
    Post-compression methods for ultrafast laser pulses typically face challenging limitations, including saturation effects and temporal pulse breakup, when large compression factors and broad bandwidths are targeted. To overcome these limitations, we exploit direct dispersion control in a gas-filled multi-pass cell, enabling, for the first time to the best of our knowledge, single-stage post-compression of 150 fs pulses and up to 250 µJ pulse energy from an ytterbium (Yb) fiber laser down to sub-20 fs. Dispersion-engineered dielectric cavity mirrors are used to achieve nonlinear spectral broadening dominated by self-phase modulation over large compression factors and bandwidths at 98% throughput. Our method opens a route toward single-stage post-compression of Yb lasers into the few-cycle regime

    A dispersion-engineered multi-pass cell for single-stage post compression of an Ytterbium laser

    Full text link
    Post-compression methods for ultrafast laser pulses typically face challenging limitations including saturation effects and temporal pulse break-up when large compression factors and broad bandwidths are targeted. To overcome these limitations, we exploit direct dispersion control in a gas-filled multi-pass cell, enabling for the first time single-stage post-compression of 150 fs pulses and up to 250 uJ pulse energy from an Ytterbium (Yb) fiber laser down to sub-20 fs. Dispersion-engineered dielectric cavity mirrors are used to achieve nonlinear spectral broadening dominated by self-phase-modulation over large compression factors and bandwidths at 98% throughput. Our method opens a route towards single-stage post-compression of Yb lasers into the few-cycle regime

    Full-Length L1CAM and Not Its Δ2Δ27 Splice Variant Promotes Metastasis through Induction of Gelatinase Expression

    Get PDF
    Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression

    aTBP: A versatile tool for fish genotyping.

    No full text
    Animal Tubulin-Based-Polymorphism (aTBP), an intron length polymorphism method recently developed for vertebrate genotyping, has been successfully applied to the identification of several fish species. Here, we report data that demonstrate the ability of the aTBP method to assign a specific profile to fish species, each characterized by the presence of commonly shared amplicons together with additional intraspecific polymorphisms. Within each aTBP profile, some fragments are also recognized that can be attributed to taxonomic ranks higher than species, e.g. genus and family. Versatility of application across different taxonomic ranks combined with the presence of a significant number of DNA polymorphisms, makes the aTBP method an additional and useful tool for fish genotyping, suitable for different purposes such as species authentication, parental recognition and detection of allele variations in response to environmental changes

    Single-stage post-compression of an Ytterbium fiber laser down to 20 fs

    No full text
    We demonstrate single-stage post-compression of an Ytterbium fiber laser to about 20 fs based on spectral broadening in a gas-filled multipass cell. A compression factor of seven has been achieved with a throughput of 86%

    Sub-20 fs single-stage post-compression of an Ytterbium fiber laser

    No full text
    We demonstrate sub-20 fs single-stage post-compression of an Ytterbium-doped fiber laser. Dispersion-engineered dielectric cavity mirrors are used to control spectral broadening in a gas-filled multi-pass cell supporting a throughput of 98%

    A dispersion-engineered multi-pass cell for single-stage post compression on an Ytterbium laser

    No full text
    Post-compression methods for ultrafast laser pulses typically face challenging limitations including saturation effects and temporal pulse break-up when large compression factors and broad bandwidths are targeted. To overcome these limitations, we exploit direct dispersion control in a gas-filled multi-pass cell, enabling for the first time single-stage post-compression of 150 fs pulses and up to 250 uJ pulse energy from an Ytterbium (Yb) fiber laser down to sub-20 fs. Dispersion-engineered dielectric cavity mirrors are used to achieve nonlinear spectral broadening dominated by self-phase-modulation over large compression factors and bandwidths at 98% throughput. Our method opens a route towards single-stage post-compression of Yb lasers into the few-cycle regime

    A single-stage dispersion-controlled multi-pass cell setup to efficiently drive resonant dispersive wave emission

    No full text
    As Yb-based ultrafast laser systems are gaining importance due to their high average power compatibility while operating at high repetition rates, spectral broadening techniques are employed to overcome their limit in pulse duration. For this purpose, multi-pass cells (MPCs) have emerged as an attractive solution providing high efficiency, large compression ratios, compact setup sizes and excellent beam quality [1]. However, compression to the few-cycle regime has only been achieved in cascaded arrangements of MPCs [2]
    corecore