3 research outputs found

    On the kinematics of the forward-facing Venetian-style rowing technique

    Get PDF
    This work presents a qualitative and quantitative pilot study which explores the kinematics of Venetian style forward-facing standing rowing as practised by able-bodied competitive athletes. The technique, made famous by the gondoliers, was replicated in a biomechanics laboratory by a cohort of four experienced rowers who compete in this style at National Level events in Malta. Athletes were marked with reflective markers following the modified Helen Hayes model and asked to row in a manner which mimics their on-water practise and recorded using a Vicon optoelectronic motion capture system. Data collected were compared to its equivalent using a standard sliding-seat ergometer as well as data collated from observations of athletes rowing on water, thus permitting the documentation of the manner of how this technique is performed. It was shown that this rowing style is characterised by rather asymmetric and complex kinematics, particularly upper-body movements which provides the athlete with a total-body workout involving all major muscle groups working either isometrically, to provide stability, or actively.peer-reviewe

    The kinematics of fixed-seat rowing : a structured synthesis

    Get PDF
    Olympic-style sliding-seat rowing is a sport that has been extensively researched, with studies investigating aspects related to the physiology, biomechanics, kinematics, and the performance of rowers. In contrast, studies on the more classic form of fixed-seat rowing are sparse. The aim of this study is to address this lacuna by analysing for the first time the specific kinematics of fixed-seat rowing as practised by able-bodied athletes, thus (i) documenting how this technique is performed in a manner that is replicable by others and (ii) showing how this technique compares and contrasts with the more standard sliding-seat technique. Fixed-seat rowing was replicated in a biomechanics laboratory where experienced fixed-seat rowers, marked with reflective markers following the modified Helen–Hayes model, were asked to row in a manner that mimics rowing on a fixed-seat boat. The findings from this study, complimented with data gathered through the observation of athletes rowing on water, were compared to sliding-seat ergometer rowing and other control experiments. The results show that, in fixed-seat rowing, there is more forward and backward thoracic movement than in sliding-seat rowing (75–77° vs. 44–52°, p < 0.0005). Tilting of the upper body stems was noted to result from rotations around the pelvis, as in sliding-seat rowing, rather than from spinal movements. The results also confirmed knee flexion in fixed-seat rowing with a range of motion of 30–35°. This is less pronounced than in standard-seat rowing, but not insignificant. These findings provide a biomechanical explanation as to why fixed-seat rowers do not have an increased risk of back injuries when compared with their sliding-seat counterparts. They also provide athletes, coaches, and related personnel with precise and detailed information of how fixed-seat rowing is performed so that they may formulate better and more specific evidence-based training programs to meliorate technique and performance.peer-reviewe

    On the Kinematics of the Forward-Facing Venetian-Style Rowing Technique

    Get PDF
    This work presents a qualitative and quantitative pilot study which explores the kinematics of Venetian style forward-facing standing rowing as practised by able-bodied competitive athletes. The technique, made famous by the gondoliers, was replicated in a biomechanics laboratory by a cohort of four experienced rowers who compete in this style at National Level events in Malta. Athletes were marked with reflective markers following the modified Helen Hayes model and asked to row in a manner which mimics their on-water practise and recorded using a Vicon optoelectronic motion capture system. Data collected were compared to its equivalent using a standard sliding-seat ergometer as well as data collated from observations of athletes rowing on water, thus permitting the documentation of the manner of how this technique is performed. It was shown that this rowing style is characterised by rather asymmetric and complex kinematics, particularly upper-body movements which provides the athlete with a total-body workout involving all major muscle groups working either isometrically, to provide stability, or actively
    corecore