2,584 research outputs found

    Narrow-line Seyfert 1 Galaxies and the M_BH - sigma Relation

    Full text link
    We have studied the location of narrow-line Seyfert 1 (NLS1) galaxies and broad-line Seyfert 1 (BLS1) galaxies on the M_BH - sigma relation of non-active galaxies. We find that NLS1 galaxies as a class - as well as the BLS1 galaxies of our comparison sample - do follow the M_BH-sigma relation of non-active galaxies if we use the width of the [SII]6716,6731 emission lines as surrogate for stellar velocity dispersion, sigma_*. We also find that the width of [OIII]5007 is a good surrogate for sigma_*, but only after (a) removal of asymmetric blue wings, and, more important, after (b) excluding core [OIII] lines with strong blueshifts (i.e., excluding galaxies which have their [OIII] velocity fields dominated by radial motions, presumably outflows). The same galaxies which are extreme outliers in [OIII] still follow the M_BH - sigma relation in [SII]. We confirm previous findings that NLS1 galaxies are systematically off-set from the M_BH - sigma relation if the full [OIII] profile is used to measure sigma. We systematically investigate the influence of several parameters on the NSL1 galaxies' location on the M_BH - sigma plane: [OIII]_core blueshift, L/L_Edd, intensity ratio FeII/H_beta, NLR density, and absolute magnitude. Implications for NLS1 models and for their evolution along the M_BH - sigma relation are discussed.Comment: ApJ Letters, in press (3 figures, one in colour

    Measuring the Radiative Histories of QSOs with the Transverse Proximity Effect

    Full text link
    Since the photons that stream from QSOs alter the ionization state of the gas they traverse, any changes to a QSO's luminosity will produce outward-propagating ionization gradients in the surrounding intergalactic gas. This paper shows that at redshift z~3 the gradients will alter the gas's Lyman-alpha absorption opacity enough to produce a detectable signature in the spectra of faint background galaxies. By obtaining noisy (S:N~4) low-resolution (~7A) spectra of a several dozen background galaxies in an R~20' field surrounding an isotropically radiating 18th magnitude QSO at z=3, it should be possible to detect any order-of-magnitude changes to the QSO's luminosity over the previous 50--100 Myr and to measure the time t_Q since the onset of the QSO's current luminous outburst with an accuracy of ~5 Myr for t_Q<~50 Myr. Smaller fields-of-view are acceptable for shorter QSO lifetimes. The major uncertainty, aside from cosmic variance, will be the shape and orientation of the QSO's ionization cone. This can be determined from the data if the number of background sources is increased by a factor of a few. The method will then provide a direct test of unification models for AGN.Comment: Accepted for publication in the ApJ. 16 page

    Reionization Constraints on the Contribution of Primordial Compact Objects to Dark Matter

    Get PDF
    Many lines of evidence suggest that nonbaryonic dark matter constitutes roughly 30% of the critical closure density, but the composition of this dark matter is unknown. One class of candidates for the dark matter is compact objects formed in the early universe, with typical masses M between 0.1 and 1 solar masses to correspond to the mass scale of objects found with microlensing observing projects. Specific candidates of this type include black holes formed at the epoch of the QCD phase transition, quark stars, and boson stars. Here we show that accretion onto these objects produces substantial ionization in the early universe, with an optical depth to Thomson scattering out to z=1100 of approximately tau=2-4 [f_CO\epsilon_{-1}(M/Msun)]^{1/2} (H_0/65)^{-1}, where \epsilon_{-1} is the accretion efficiency \epsilon\equiv L/{\dot M}c^2 divided by 0.1 and f_CO is the fraction of matter in the compact objects. The current upper limit to the scattering optical depth, based on the anisotropy of the microwave background, is approximately 0.4. Therefore, if accretion onto these objects is relatively efficient, they cannot be the main component of nonbaryonic dark matter.Comment: 12 pages including one figure, uses aaspp4, submitted to Ap

    Evolution of Supermassive Black Holes from Cosmological Simulations

    Full text link
    The correlations between the mass of supermassive black holes and properties of their host galaxies are investigated through cosmological simulations. Black holes grow from seeds of 100 solar masses inserted into density peaks present in the redshift range 12-15. Seeds grow essentially by accreting matter from a nuclear disk and also by coalescences resulting from merger episodes. At z=0, our simulations reproduce the black hole mass function and the correlations of the black hole mass both with stellar velocity dispersion and host dark halo mass. Moreover, the evolution of the black hole mass density derived from the present simulations agrees with that derived from the bolometric luminosity function of quasars, indicating that the average accretion history of seeds is adequately reproduced . However, our simulations are unable to form black holes with masses above 109M⊙10^9 M_{\odot} at z∌6z\sim 6, whose existence is inferred from the bright quasars detected by the Sloan survey in this redshift range.Comment: Talk given at the International Workshop on Astronomy and Relativistic Astrophysics (IWARA 2009), Maresias, Brazil. to be published in the International Journal of Modern Physics

    Mechanical heating by active galaxies

    Full text link
    Jets and winds are significant channels for energy loss from accreting black holes. These outflows mechanically heat their surroundings, through shocks as well as gentler forms of heating. We discuss recent efforts to understand the nature and distribution of mechanical heating by central AGNs in clusters of galaxies, using numerical simulations and analytic models. Specifically, we will discuss whether the relatively gentle `effervescent heating' mechanism can compensate for radiative losses in the central regions of clusters, and account for the excess entropy observed at larger radii.Comment: 10 pages, no figures. Submitted to Philosophical Transactions of the Royal Society (Series A: Mathematical, Physical and Engineering Sciences), proceedings of the Poyal Society Discussion Meeting on the Impact of Active Galaxies on the Universe at Large, London, February 16-17, 200

    An Australia telescope survey for CMB anisotropies

    Get PDF
    We have surveyed six distinct `empty fields' using the Australia Telescope Compact Array in an ultra-compact configuration with the aim of imaging, with a high brightness sensitivity, any arcmin-scale brightness-temperature anisotropies in the background radio sky. The six well-separated regions were observed at a frequency of 8.7 GHz and the survey regions were limited by the ATCA primary beams which have a full width at half maximum of 6 arcmin at this frequency; all fields were observed with a resolution of 2 arcmin and an rms thermal noise of 24 microJy/beam. After subtracting foreground confusion detected in higher resolution images of the fields, residual fluctuations in Stokes I images are consistent with the expectations from thermal noise and weaker (unidentified) foreground sources; the Stokes Q and U images are consistent with expectations from thermal noise. Within the sensitivity of our observations, we have no reason to believe that there are any Sunyaev-Zeldovich holes in the microwave sky surveyed. Assuming Gaussian-form CMB anisotropy with a `flat' spectrum, we derive 95 per cent confidence upper limits of Q_flat < 10--11 microK in polarized intensity and Q_flat < 25 microK in total intensity. The ATCA filter function peaks at l=4700 and has half maximum values at l=3350 and 6050.Comment: 17 pages, includes 8 figures and 6 tables, accepted for publication in MNRA

    Molecular Lines as Diagnostics of High Redshift Objects

    Get PDF
    Models are presented for CO rotational line emission by high redshift starburst galaxies. The influence of the cosmic microwave background on the thermal balance and the level populations of atomic and molecular species is explicitly included. Predictions are made for the observability of starburst galaxies through line and continuum emission between z=5 and z=30. It is found that the Millimeter Array could detect a starburst galaxy with ~10^5 Orion regions, corresponding to a star formation rate of about 30 Mo yr^{-1}, equally well at z=5 or z=30 due to the increasing cosmic microwave background temperature with redshift. Line emission is a potentially more powerful probe than dust continuum emission of very high redshift objects.Comment: 15 pages LaTex, uses aasms4.sty, Accepted by ApJ

    The Quasar-frame Velocity Distribution of Narrow CIV Absorbers

    Full text link
    We report on a survey for narrow (FWHM < 600 km/s) CIV absorption lines in a sample of bright quasars at redshifts 1.8≀z<2.251.8 \le z < 2.25 in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow CIV absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad MgII emission line, and then measure the absorbers' quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find a substantial number (≄43±6\ge 43\pm6 per cent) of absorbers with REW >0.3> 0.3 \AA in the velocity range +750 km/s \la v \la +12000 km/s are intrinsic to the AGN outflow. This `outflow fraction' peaks near v=+2000v=+2000 km/s with a value of foutflow≃0.81±0.13f_{outflow} \simeq 0.81 \pm 0.13. At velocities below v≈+2000v \approx +2000 km/s the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disk. Furthermore, we find that outflow-absorbers are on average broader and stronger than cosmologically-intervening systems. Finally, we find that ∌14\sim 14 per cent of the quasars in our sample exhibit narrow, outflowing CIV absorption with REW >0.3> 0.3\AA, slightly larger than that for broad absorption line systems.Comment: 11 pages, 9 figures, accepted for publication in MNRA
    • 

    corecore