284 research outputs found

    Liquid London: Sporting spectacle, britishness and ban-optic surveillance

    Get PDF
    Under the rubrics of recent 'terror' attacks-especially 9/11 and 7/7-the discourses of security and surveillance, and the subsequent heightened awareness of risk and insecurity, have been framed within an increasingly global context. Through an appropriation of the ban-opticon dispositif (Bigo 2006, 2011), this article analyses the changing urban transformations of civic space and mediated messages perpetuated within, and through, the London 2012 Olympic Games. In so doing, we deconstruct the spatial and commercial (re)fashioning of London 2012 and key messages delivered throughout the opening ceremony via a postpanoptic lens, to identify how processes of both 'hard' and 'soft' social control are reiterated and (re)configured through the establishment of a clearly delineated 'other', that which is deemed 'unwelcome' and situated as posing a threat to the safety of the normalised and accepted majority. Thus, through a reading of the cultural politics of class, race and gender that are embedded within sporting spectacle, we argue that London 2012 capitalised on an institutionalised culture of fear to convey, and thus contain, an accepted vision of multiculturalism, while legitimising surveillance practices and security measures that became ingrained within the urban landscape and social fabric of the nation's capital. In so doing, we point towards a troubling yet all too tangible true London Olympic legacy, one that identifies and subjects specific yet significant 'others' to problematic forms of social control and corporeal governance. © The author(s), 2014

    Maximum black-hole spin from quasi-circular binary mergers

    Get PDF
    Black holes of mass M must have a spin angular momentum S below the Kerr limit chi = S/M^2 < 1, but whether astrophysical black holes can attain this limiting spin depends on their accretion history. Gas accretion from a thin disk limits the black-hole spin to chi_gas < 0.9980 +- 0.0002, as electromagnetic radiation from this disk with retrograde angular momentum is preferentially absorbed by the black hole. Extrapolation of numerical-relativity simulations of equal-mass binary black-hole mergers to maximum initial spins suggests these mergers yield a maximum spin chi_eq < 0.95. Here we show that for smaller mass ratios q = m/M << 1, the superradiant extraction of angular momentum from the larger black hole imposes a fundamental limit chi_lim < 0.9979 +- 0.0001 on the final black-hole spin even in the test-particle limit q -> 0 of binary black-hole mergers. The nearly equal values of chi_gas and chi_lim imply that measurement of supermassive black-hole spins cannot distinguish a black hole built by gas accretion from one assembled by the gravitational inspiral of a disk of compact stellar remnants. We also show how superradiant scattering alters the mass and spin predicted by models derived from extrapolating test-particle mergers to finite mass ratios.Comment: final version accepted in PRD, new Fig.4 and discussio

    Active Galactic Nuclei in Void Regions

    Full text link
    We present a comprehensive study of accretion activity in the most underdense environments in the universe, the voids, based on the SDSS DR2 data. Based on investigations of multiple void regions, we show that AGN's occurrence rate and properties differ from those in walls. AGN are more common in voids than in walls, but only among moderately luminous and massive galaxies (M_r < -20, log M_*/M_sun < 10.5), and this enhancement is more pronounced for the weakly accreting systems (i.e., L_[O III] < 10^39 erg/s). Void AGN hosted by moderately massive and luminous galaxies are accreting at equal or lower rates than their wall counterparts, show less obscuration than in walls, and similarly aged stellar populations. The very few void AGN in massive bright hosts accrete more strongly, are more obscured, and are associated with younger stellar emission than wall AGN. Thus, accretion strength is probably connected to the availability of fuel supply, and accretion and star-formation co-evolve and rely on the same source of fuel. Nearest neighbor statistics indicate that the weak accretion activity (LINER-like) is not influenced by the local environment. However, H IIs, Seyferts, and Transition objects prefer more grouped small scale structures, indicating that the rate at which galaxies interact with each other affects their activity. These trends support a potential H II -> Seyfert/Transition Object -> LINER evolutionary sequence that we show is apparent in many properties of actively line-emitting galaxies, in both voids and walls. The subtle differences between void and wall AGN might be explained by a longer, less disturbed duty cycle of these systems in voids.Comment: 19 pages, 7 figures (1 color); to appear in ApJ, submitted on May 11, 200

    Ribbons on the CBR Sky: A Powerful Test of a Baryon Symmetric Universe

    Full text link
    If the Universe consists of domains of matter and antimatter, annihilations at domain interfaces leave a distinctive imprint on the Cosmic Background Radiation (CBR) sky. The signature is anisotropies in the form of long, thin ribbons of width θW∼0.1∘\theta_W\sim 0.1^\circ, separated by angle θL≃1∘(L/100h−1Mpc)\theta_L\simeq 1^\circ(L/100h^{-1}{Mpc}) where L is the characteristic domain size, and y-distortion parameter y≈10−6y \approx 10^{-6}. Such a pattern could potentially be detected by the high-resolution CBR anisotropy experiments planned for the next decade, and such experiments may finally settle the question of whether or not our Hubble volume is baryon symmetric.Comment: LaTeX, 10 pages, 4 figures in epsf. Revised version corrects a couple of relevant mistake

    Biases in Virial Black Hole Masses: An SDSS Perspective

    Full text link
    We compile black hole (BH) masses for ∼60,000\sim 60,000 quasars in the redshift range 0.1≲z≲4.50.1 \lesssim z \lesssim 4.5 included in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS), using virial BH mass estimators based on the \hbeta, \MgII, and \CIV emission lines. We find that: (1) within our sample, the widths of the three lines follow log-normal distributions, with means and dispersions that do not depend strongly on luminosity or redshift;(2) the \MgII- and \hbeta-estimated BH masses are consistent with one another; and (3) the \CIV BH mass estimator may be more severely affected by a disk wind component than the \MgII and \hbeta estimators, giving a positive bias in mass correlated with the \CIV-\MgII blueshift. Most SDSS quasars have virial BH masses in the range 108−109M⊙10^8-10^9 M_\odot. There is a clear upper mass limit of ∼1010M⊙\sim 10^{10} M_\odot for active BHs at z≳2z \gtrsim 2, decreasing at lower redshifts. Making the reasonable assumptions that the underlying BH mass distribution decreases with mass and that the Eddington ratio distribution at fixed BH mass has non-zero width, we show that the measured virial BH mass distribution and Eddington ratio distribution are subject to Malmquist bias. A radio quasar subsample (with 1.5≲z≲2.31.5\lesssim z\lesssim 2.3) has mean virial BH mass larger by ∼0.12\sim 0.12 dex than the whole sample. A broad absorption line (BAL) quasar subsample (with 1.7≲z≲2.21.7\lesssim z\lesssim 2.2) has identical virial mass distribution as the nonBAL sample, with no mean offset. (Abridged)Comment: Updated virial mass measurements; improved presentation of the MC simulation; added new discussion sections; conclusions unchanged. The full table1 is available at http://www.astro.princeton.edu/~yshen/BH_mass/datafile1.txt.tar.g

    Star formation in 30 Doradus

    Get PDF
    Using observations obtained with the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope (HST), we have studied the properties of the stellar populations in the central regions of 30 Dor, in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterise and quantify this effect using young massive main sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main sequence (PMS) stars by looking for objects with a strong (> 4 sigma) Halpha excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one third of these objects are younger than ~4Myr, compatible with the age of the massive stars in the central ionising cluster R136, whereas the rest have ages up to ~30Myr, with a median age of ~12Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very centre of the cluster. We attribute this latter effect to photoevaporation of the older circumstellar discs caused by the massive ionising members of R136.Comment: 15 pages, 12 figures. Accepted for publication in The Astrophysical Journa

    The Luminosity, Mass, and Age Distributions of Compact Star Clusters in M83 Based on HST/WFC3 Observations

    Full text link
    The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL \propto L^{alpha}, with alpha = -2.04 +/- 0.08, down to M_V ~ -5.5. We test the sensitivity of the luminosity function to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in alpha. We estimate ages and masses for the clusters by comparing their measured UBVI,Halpha colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power-law, dN/dt propto t^{gamma}, with gamma=-0.9 +/- 0.2, for M > few x 10^3 Msun and t < 4x10^8 yr. This indicates that clusters are disrupted quickly, with ~80-90% disrupted each decade in age over this time. The mass function of clusters over the same M-t range is a power law, dN/dM propto M^{beta}, with beta=-1.94 +/- 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, M_C, or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e. mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters.Comment: 36 pages, 13 figures, 1 table; accepted for publication in the Astrophysical Journa

    Red Galaxy Growth and the Halo Occupation Distribution

    Full text link
    We have traced the past 7 Gyr of red galaxy stellar mass growth within dark matter halos. We have determined the halo occupation distribution, which describes how galaxies reside within dark matter halos, using the observed luminosity function and clustering of 40,696 0.2<z<1.0 red galaxies in Bootes. Half of 10^{11.9} Msun/h halos host a red central galaxy, and this fraction increases with increasing halo mass. We do not observe any evolution of the relationship between red galaxy stellar mass and host halo mass, although we expect both galaxy stellar masses and halo masses to evolve over cosmic time. We find that the stellar mass contained within the red population has doubled since z=1, with the stellar mass within red satellite galaxies tripling over this redshift range. In cluster mass halos most of the stellar mass resides within satellite galaxies and the intra-cluster light, with a minority of the stellar mass residing within central galaxies. The stellar masses of the most luminous red central galaxies are proportional to halo mass to the power of a third. We thus conclude that halo mergers do not always lead to rapid growth of central galaxies. While very massive halos often double in mass over the past 7 Gyr, the stellar masses of their central galaxies typically grow by only 30%.Comment: Accepted for publication in the ApJ. 34 pages, 22 Figures, 5 Table

    AEGIS: New Evidence Linking Active Galactic Nuclei to the Quenching of Star Formation

    Get PDF
    Utilizing Chandra X-ray observations in the All-wavelength Extended Groth Strip International Survey (AEGIS) we identify 241 X-ray selected Active Galactic Nuclei (AGNs, L > 10^{42} ergs/s) and study the properties of their host galaxies in the range 0.4 < z < 1.4. By making use of infrared photometry from Palomar Observatory and BRI imaging from the Canada-France-Hawaii Telescope, we estimate AGN host galaxy stellar masses and show that both stellar mass and photometric redshift estimates (where necessary) are robust to the possible contamination from AGNs in our X-ray selected sample. Accounting for the photometric and X-ray sensitivity limits of the survey, we construct the stellar mass function of X-ray selected AGN host galaxies and find that their abundance decreases by a factor of ~2 since z~1, but remains roughly flat as a function of stellar mass. We compare the abundance of AGN hosts to the rate of star formation quenching observed in the total galaxy population. If the timescale for X-ray detectable AGN activity is roughly 0.5-1 Gyr--as suggested by black hole demographics and recent simulations--then we deduce that the inferred AGN "trigger" rate matches the star formation quenching rate, suggesting a link between these phenomena. However, given the large range of nuclear accretion rates we infer for the most massive and red hosts, X-ray selected AGNs may not be directly responsible for quenching star formation.Comment: 12 pages. Submitted to ApJ. Comments welcom
    • …
    corecore