2,080 research outputs found

    Towards a Comprehensive Fueling-Controlled Theory on the Growth of Massive Black Holes and Host Spheroids

    Get PDF
    We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported in the nuclear (central kpc) regions of galaxies. We study the gas fueling onto the inner accretion disk (sub-pc scale) and the star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies). These sub-pc resolution simulation of gas fueling that is mainly depleted by star formation naturally satisfy the `M_BH - $M_virial' relation, with a scatter considerably less than the observed one. We found a generalized version of Kennicutt-Schmidt Law for starbursts is satisfied, in which the total gas depletion rate (dot{M}_gas = dot{M}_BH + dot{M}_SF) is the one that scales as M_gas/t_orbital. We also found that the `M_BH - sigma' relation is a byproduct of the `M_BH - M_virial' relation in the fueling controlled scenario.Comment: 12 pages, figures, submited to ApJ, email: [email protected]

    Laser-Doppler gas-velocity instrument

    Get PDF
    Three-D instrument using a laser light source measures both turbulence and mean velocity of subsonic and supersonic gas flows. This instrument is based on the measurement of the Doppler frequency shift of light waves scattered by moving particles in the gas stream

    Reionization Constraints on the Contribution of Primordial Compact Objects to Dark Matter

    Get PDF
    Many lines of evidence suggest that nonbaryonic dark matter constitutes roughly 30% of the critical closure density, but the composition of this dark matter is unknown. One class of candidates for the dark matter is compact objects formed in the early universe, with typical masses M between 0.1 and 1 solar masses to correspond to the mass scale of objects found with microlensing observing projects. Specific candidates of this type include black holes formed at the epoch of the QCD phase transition, quark stars, and boson stars. Here we show that accretion onto these objects produces substantial ionization in the early universe, with an optical depth to Thomson scattering out to z=1100 of approximately tau=2-4 [f_CO\epsilon_{-1}(M/Msun)]^{1/2} (H_0/65)^{-1}, where \epsilon_{-1} is the accretion efficiency \epsilon\equiv L/{\dot M}c^2 divided by 0.1 and f_CO is the fraction of matter in the compact objects. The current upper limit to the scattering optical depth, based on the anisotropy of the microwave background, is approximately 0.4. Therefore, if accretion onto these objects is relatively efficient, they cannot be the main component of nonbaryonic dark matter.Comment: 12 pages including one figure, uses aaspp4, submitted to Ap

    Improvement of Pheromone Trapping in Low Density Populations of \u3ci\u3eChoristoneura Pinus Pinus\u3c/i\u3e (Lepidoptera: Tortricidae)

    Get PDF
    Pheromone baited bucket traps (e.g., Multipher) are popular as a monitoring tool for the jack pine budworm, Choristoneura pinus pinus Freeman (Lepidoptera: Tortricidae), in Canada. However, there is no evidence to support their use when budworm populations are low. We therefore evaluated the capture rate of bucket traps at two placement heights (2 vs 6 m) in two jack pine forests in 2011, having low (≤5 fifth instars per mfoliated branch length) budworm populations. Compared to wing traps (e.g., Pherocon 1C), the trap design used initially to evaluate efficacy of the C. pinus pheromone, bucket traps caught fewer C. pinus and capture rates of both trap designs did not differ significantly between the two heights tested. Loss of bucket traps at 2 m, due to black bears, suggested that higher placement of traps was warranted to maintain the integrity of the array. However, wing traps are recommended due to their ability to consistently catch more moths when C. pinus populations are low

    Laser Doppler velocity instrument

    Get PDF
    Laser Doppler velocity instrument for measuring turbulence and mean velocity in subsonic and supersonic gas flow

    Top-Down Fragmentation of a Warm Dark Matter Filament

    Get PDF
    We present the first high-resolution n-body simulations of the fragmentation of dark matter filaments. Such fragmentation occurs in top-down scenarios of structure formation, when the dark matter is warm instead of cold. In a previous paper (Knebe et al. 2002, hereafter Paper I), we showed that WDM differs from the standard Cold Dark Matter (CDM) mainly in the formation history and large-scale distribution of low-mass haloes, which form later and tend to be more clustered in WDM than in CDM universes, tracing more closely the filamentary structures of the cosmic web. Therefore, we focus our computational effort in this paper on one particular filament extracted from a WDM cosmological simulation and compare in detail its evolution to that of the same CDM filament. We find that the mass distribution of the halos forming via fragmentation within the filament is broadly peaked around a Jeans mass of a few 10^9 Msun, corresponding to a gravitational instability of smooth regions with an overdensity contrast around 10 at these redshifts. Our results confirm that WDM filaments fragment and form gravitationally bound haloes in a top-down fashion, whereas CDM filaments are built bottom-up, thus demonstrating the impact of the nature of the dark matter on dwarf galaxy properties.Comment: 7 pages, 7 figures, replaced with MNRAS accepted version (minor revisions

    A SuperMassive Black Hole Fundamental Plane for Ellipticals

    Get PDF
    We obtain the coefficients of a new fundamental plane for supermassive black holes at the centers of elliptical galaxies, involving measured central black hole mass and photometric parameters which define the light distribution. The galaxies are tightly distributed around this mass fundamental plane, with improvement in the rms residual over those obtained from the \mbh-\sigma and \mbh-L relations. This implies a strong multidimensional link between the central massive black hole formation and global photometric properties of elliptical galaxies and provides an improved estimate of black hole mass from galaxy data.Comment: Accepted for publication in ApJ Letter

    Recent star formation in high-redshift early-type galaxies: insights from the rest-frame UV

    Get PDF
    We combine deep UBVRIzJK photometry from the MUSYC survey with redshifts from the COMBO-17 survey to study the rest-frame ultraviolet (UV) properties of 674 high-redshift (0.5<z<1) early-type galaxies, drawn from the Extended Chandra Deep Field South (E-CDFS). Galaxy morphologies are determined through visual inspection of Hubble Space Telescope (HST) images taken from the GEMS survey. We harness the sensitivity of the UV to young (<1 Gyrs old) stars to quantify the recent star formation history of the early-type population. We find compelling evidence that early-types of all luminosities form stars over the lifetime of the Universe, although the bulk of their star formation is already complete at high redshift. Luminous (-23<M(V)<-20.5) early-types form 10-15 percent of their mass after z=1, while their less luminous (M(V)>-20.5) counterparts form 30-60 percent of their mass in the same redshift range.Comment: To appear in the proceedings of the IAU 245, eds. M. Bureau, E. Athanassoula, and B. Barbu
    corecore