7 research outputs found

    Antimicrobial Susceptibility Profiles and Strain Type Diversity of Campylobacter jejuni Isolates from Turkeys in Eastern North Carolina ▿ †

    No full text
    Campylobacter jejuni is one of the most common bacterial causes of human gastroenteritis, and recent findings suggest that turkeys are an important reservoir for this organism. In this study, 80 C. jejuni isolates from eastern North Carolina were characterized for resistance to nine antimicrobials, and strain types were determined by fla typing, pulsed-field gel electrophoresis (PFGE) with SmaI and KpnI, and (for 41 isolates) multilocus sequence typing (MLST). PFGE analysis suggested that many of the isolates (37/40 [ca. 93%]) in a major genomic cluster had DNA that was partially methylated at SmaI sites. Furthermore, 12/40 (30%) of the isolates in this cluster were completely resistant to digestion by KpnI, suggesting methylation at KpnI sites. MLST of 41 isolates identified 10 sequence types (STs), of which 4 were new. Three STs (ST-1839, ST-2132 and the new ST-2934) were predominant and were detected among isolates from different farms. The majority of the isolates (74%) were resistant to three or more antimicrobials, and resistance to ciprofloxacin was common (64%), whereas resistance to the other drug of choice for treatment of human campylobacteriosis, erythromycin, was never encountered. Most (33/34) of the kanamycin-resistant isolates were also resistant to tetracycline; however, only ca. 50% of the tetracycline-resistant isolates were also kanamycin resistant. Isolates with certain antimicrobial resistance profiles had identical or closely related strain types. Overall, the findings suggest dissemination of certain clonal groups of C. jejuni isolates in the turkey production industry of this region

    Conservation of Genomic Localization and Sequence Content of Sau3AI-Like Restriction-Modification Gene Cassettes among Listeria monocytogenes Epidemic Clone I and Selected Strains of Serotype 1/2a▿

    No full text
    Listeria monocytogenes is a food-borne pathogen with a clonal population structure and apparently limited gene flow between strains of different lineages. Strains of epidemic clone I (ECI) have been responsible for numerous outbreaks and invariably have DNA that is resistant to digestion by Sau3AI, suggesting methylation of cytosine at GATC sites. A putative restriction-modification (RM) gene cassette has been identified in the genome of the ECI strain F2365 and all other tested ECI strains but is absent from other strains of the same serotype (4b). Homologous RM cassettes have not been reported among L. monocytogenes isolates of other serotypes. Furthermore, conclusive evidence for the involvement of this RM cassette in the Sau3AI resistance phenotype of ECI strains has been lacking. In this study, we describe a highly conserved RM cassette in certain strains of serotypes 1/2a and 4a that have Sau3AI-resistant DNA. In these strains the RM cassette was in the same genomic location as in the ECI reference strain F2365. The cassette included a gene encoding a putative recombinase, suggesting insertion via site-specific recombination. Deletion of the RM cassette in the ECI strain F2365 and the serotype 1/2a strain A7 rendered the DNA of both strains susceptible to Sau3AI digestion, providing conclusive evidence that the cassette includes a gene required for methylation of cytosine at GATC sites in both strains. The findings suggest that, in addition to its presence in ECI strains, this RM cassette and the accompanying genomic DNA methylation is also encountered among selected strains of other lineages

    Differences in Methylation at GATC Sites in Genomic DNA of Campylobacter coli from Turkeys and Swine ▿

    No full text
    A significant fraction (46/108, 43%) of swine isolates of Campylobacter coli but none of 81 isolates of C. coli from turkeys had genomic DNA that was resistant to digestion by MboI, suggesting methylation of adenines at GATC sites. No consistent association was noted between antimicrobial resistance and MboI resistance. Seven swine-associated multilocus sequence typing-based sequence types (STs) were detected among multiple isolates with MboI-resistant DNA. The data suggest host-associated DNA modification system(s) specific for adenine at GATC sites in C. coli from swine
    corecore