883 research outputs found
Cosmological Density and Power Spectrum from Peculiar Velocities: Nonlinear Corrections and PCA
We allow for nonlinear effects in the likelihood analysis of galaxy peculiar
velocities, and obtain ~35%-lower values for the cosmological density parameter
Om and the amplitude of mass-density fluctuations. The power spectrum in the
linear regime is assumed to be a flat LCDM model (h=0.65, n=1, COBE) with only
Om as a free parameter. Since the likelihood is driven by the nonlinear regime,
we "break" the power spectrum at k_b=0.2 h/Mpc and fit a power law at k>k_b.
This allows for independent matching of the nonlinear behavior and an unbiased
fit in the linear regime. The analysis assumes Gaussian fluctuations and
errors, and a linear relation between velocity and density. Tests using proper
mock catalogs demonstrate a reduced bias and a better fit. We find for the
Mark3 and SFI data Om_m=0.32+-0.06 and 0.37+-0.09 respectively, with
sigma_8*Om^0.6 = 0.49+-0.06 and 0.63+-0.08, in agreement with constraints from
other data. The quoted 90% errors include cosmic variance. The improvement in
likelihood due to the nonlinear correction is very significant for Mark3 and
moderately so for SFI. When allowing deviations from LCDM, we find an
indication for a wiggle in the power spectrum: an excess near k=0.05 and a
deficiency at k=0.1 (cold flow). This may be related to the wiggle seen in the
power spectrum from redshift surveys and the second peak in the CMB anisotropy.
A chi^2 test applied to modes of a Principal Component Analysis (PCA) shows
that the nonlinear procedure improves the goodness of fit and reduces a spatial
gradient of concern in the linear analysis. The PCA allows addressing spatial
features of the data and fine-tuning the theoretical and error models. It shows
that the models used are appropriate for the cosmological parameter estimation
performed. We address the potential for optimal data compression using PCA.Comment: 18 pages, LaTex, uses emulateapj.sty, ApJ in press (August 10, 2001),
improvements to text and figures, updated reference
Purification, growth, and characterization of Zn(x)Cd(1-x)Se crystals
The purification of starting materials which were used in the growth of Zn(x)Cd(1-x)Se (x = 0.2) single crystals using the traveling solution method (TSM) is reported. Up to 13 cm long single crystals and as grown resistivities of 6 x 10(exp 12) ohm/cm could be achieved. Infrared and Raman spectra of Zn(0.2)Cd(0.8)Se are also presented and discussed
iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects
We address the task of 6D pose estimation of known rigid objects from single
input images in scenarios where the objects are partly occluded. Recent
RGB-D-based methods are robust to moderate degrees of occlusion. For RGB
inputs, no previous method works well for partly occluded objects. Our main
contribution is to present the first deep learning-based system that estimates
accurate poses for partly occluded objects from RGB-D and RGB input. We achieve
this with a new instance-aware pipeline that decomposes 6D object pose
estimation into a sequence of simpler steps, where each step removes specific
aspects of the problem. The first step localizes all known objects in the image
using an instance segmentation network, and hence eliminates surrounding
clutter and occluders. The second step densely maps pixels to 3D object surface
positions, so called object coordinates, using an encoder-decoder network, and
hence eliminates object appearance. The third, and final, step predicts the 6D
pose using geometric optimization. We demonstrate that we significantly
outperform the state-of-the-art for pose estimation of partly occluded objects
for both RGB and RGB-D input
Arctic shipping emissions inventories and future scenarios
This paper presents 5 kmĂ—5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow), aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO<sub>2</sub> emissions (~42 000 gigagrams) by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships
Accurate and linear time pose estimation from points and lines
The final publication is available at link.springer.comThe Perspective-n-Point (PnP) problem seeks to estimate the pose of a calibrated camera from n 3Dto-2D point correspondences. There are situations, though, where PnP solutions are prone to fail because feature point correspondences cannot be reliably estimated (e.g. scenes with repetitive patterns or with low texture). In such
scenarios, one can still exploit alternative geometric entities, such as lines, yielding the so-called Perspective-n-Line (PnL) algorithms. Unfortunately, existing PnL solutions are not as accurate and efficient as their point-based
counterparts. In this paper we propose a novel approach to introduce 3D-to-2D line correspondences into a PnP formulation, allowing to simultaneously process points and lines. For this purpose we introduce an algebraic line error
that can be formulated as linear constraints on the line endpoints, even when these are not directly observable. These constraints can then be naturally integrated within the linear formulations of two state-of-the-art point-based algorithms,
the OPnP and the EPnP, allowing them to indistinctly handle points, lines, or a combination of them. Exhaustive experiments show that the proposed formulation brings remarkable boost in performance compared to only point or
only line based solutions, with a negligible computational overhead compared to the original OPnP and EPnP.Peer ReviewedPostprint (author's final draft
Prozone Masks Elevated Sars-Cov-2 Antibody Level Measurements
We report a prozone effect in measurement of SARS-CoV-2 spike protein antibody levels from an antibody surveillance program. Briefly, the prozone effect occurs in immunoassays when excessively high antibody concentration disrupts the immune complex formation, resulting in a spuriously low reported result. Following participant inquiries, we observed anomalously low measurement of SARS-CoV-2 spike protein antibody levels using the Roche Elecsys® Anti-SARS-CoV-2 S immunoassay from participants in the Texas Coronavirus Antibody Research survey (Texas CARES), an ongoing prospective, longitudinal antibody surveillance program. In July, 2022, samples were collected from ten participants with anomalously low results for serial dilution studies, and a prozone effect was confirmed. From October, 2022 to March, 2023, serial dilution of samples detected 74 additional cases of prozone out of 1,720 participants\u27 samples. Prozone effect may affect clinical management of at-risk populations repeatedly exposed to SARS-CoV-2 spike protein through multiple immunizations or serial infections, making awareness and mitigation of this issue paramount
Phylogeny and classification of novel diversity in Sainouroidea (Cercozoa, Rhizaria) sheds light on a highly diverse and divergent clade
Sainouroidea is a molecularly diverse clade of cercozoan flagellates and amoebae in the eukaryotic supergroup Rhizaria. Previous 18S rDNA environmental sequencing of globally collected fecal and soil samples revealed great diversity and high sequence divergence in the Sainouroidea. However, a very limited amount of this diversity has been observed or described. The two described genera of amoebae in this clade are Guttulinopsis, which displays aggregative multicellularity, and Rosculus, which does not. Although the identity of Guttulinopsis is straightforward due to the multicellular fruiting bodies they form, the same is not true for Rosculus, and the actual identity of the original isolate is unclear. Here we isolated amoebae with morphologies like that of Guttulinopsis and Rosculus from many environments and analyzed them using 18S rDNA sequencing, light microscopy, and transmission electron microscopy. We define a molecular species concept for Sainouroidea that resulted in the description of 4 novel genera and 12 novel species of naked amoebae. Aggregative fruiting is restricted to the genus Guttulinopsis, but other than this there is little morphological variation amongst these taxa. Taken together, simple identification of these amoebae is problematic and potentially unresolvable without the 18S rDNA sequence
SG-VAE: Scene Grammar Variational Autoencoder to generate new indoor scenes
Deep generative models have been used in recent years to learn coherent
latent representations in order to synthesize high-quality images. In this
work, we propose a neural network to learn a generative model for sampling
consistent indoor scene layouts. Our method learns the co-occurrences, and
appearance parameters such as shape and pose, for different objects categories
through a grammar-based auto-encoder, resulting in a compact and accurate
representation for scene layouts. In contrast to existing grammar-based methods
with a user-specified grammar, we construct the grammar automatically by
extracting a set of production rules on reasoning about object co-occurrences
in training data. The extracted grammar is able to represent a scene by an
augmented parse tree. The proposed auto-encoder encodes these parse trees to a
latent code, and decodes the latent code to a parse tree, thereby ensuring the
generated scene is always valid. We experimentally demonstrate that the
proposed auto-encoder learns not only to generate valid scenes (i.e. the
arrangements and appearances of objects), but it also learns coherent latent
representations where nearby latent samples decode to similar scene outputs.
The obtained generative model is applicable to several computer vision tasks
such as 3D pose and layout estimation from RGB-D data
SG-VAE: Scene Grammar Variational Autoencoder to Generate New Indoor Scenes
Deep generative models have been used in recent years to learn coherent latent representations in order to synthesize high-quality images. In this work, we propose a neural network to learn a generative model for sampling consistent indoor scene layouts. Our method learns the co-occurrences, and appearance parameters such as shape and pose, for different objects categories through a grammar-based auto-encoder, resulting in a compact and accurate representation for scene layouts. In contrast to existing grammar-based methods with a user-specified grammar, we construct the grammar automatically by extracting a set of production rules on reasoning about object co-occurrences in training data. The extracted grammar is able to represent a scene by an augmented parse tree. The proposed auto-encoder encodes these parse trees to a latent code, and decodes the latent code to a parse tree, thereby ensuring the generated scene is always valid. We experimentally demonstrate that the proposed auto-encoder learns not only to generate valid scenes (i.e. the arrangements and appearances of objects), but it also learns coherent latent representations where nearby latent samples decode to similar scene outputs. The obtained generative model is applicable to several computer vision tasks such as 3D pose and layout estimation from RGB-D data
Reputation Agent: Prompting Fair Reviews in Gig Markets
Our study presents a new tool, Reputation Agent, to promote fairer reviews
from requesters (employers or customers) on gig markets. Unfair reviews,
created when requesters consider factors outside of a worker's control, are
known to plague gig workers and can result in lost job opportunities and even
termination from the marketplace. Our tool leverages machine learning to
implement an intelligent interface that: (1) uses deep learning to
automatically detect when an individual has included unfair factors into her
review (factors outside the worker's control per the policies of the market);
and (2) prompts the individual to reconsider her review if she has incorporated
unfair factors. To study the effectiveness of Reputation Agent, we conducted a
controlled experiment over different gig markets. Our experiment illustrates
that across markets, Reputation Agent, in contrast with traditional approaches,
motivates requesters to review gig workers' performance more fairly. We discuss
how tools that bring more transparency to employers about the policies of a gig
market can help build empathy thus resulting in reasoned discussions around
potential injustices towards workers generated by these interfaces. Our vision
is that with tools that promote truth and transparency we can bring fairer
treatment to gig workers.Comment: 12 pages, 5 figures, The Web Conference 2020, ACM WWW 202
- …