14 research outputs found

    Electron ionization mass spectral fragmentation study of sulfation derivatives of polychlorinated biphenyls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polychlorinated biphenyls are persistent organic pollutants that can be metabolized via hydroxylated PCBs to PCB sulfate metabolites. The sensitive and selective analysis of PCB sulfate monoesters by gas chromatography-mass spectrometry (GC-MS) requires their derivatization, for example, as PCB 2,2,2-trichloroethyl (TCE) sulfate monoesters. To aid in the identification of unknown PCB sulfate metabolites isolated from biological samples, the electron impact MS fragmentation pathways of selected PCB TCE sulfate diesters were analyzed and compared to the fragmentation pathways of the corresponding methoxylated PCBs.</p> <p>Results</p> <p>The most abundant and characteristic fragment ions of PCB TCE sulfate diesters were formed by releasing CHCCl<sub>3</sub>, SO<sub>3</sub>, HCl<sub>2 </sub>and/or CCl<sub>3 </sub>from the TCE sulfate moiety and Cl<sub>2</sub>, HCl, ethyne and chloroethyne from an intermediate phenylcyclopentadienyl cation. The fragmentation pattern depended on the degree of chlorination and the position of the TCE sulfate moiety (i.e., <it>ortho </it>vs. <it>meta/para </it>to the second phenyl ring), but were independent of the chlorine substitution pattern. These fragmentation pathways are similar to the fragmentation pathways of structurally related methoxylated PCBs.</p> <p>Conclusion</p> <p>Knowledge of the fragmentation patterns of PCB TCE sulfate diesters will greatly aid in determining the position of sulfate moiety (<it>ortho </it>vs. <it>meta/para</it>) of unknown PCB sulfate metabolites isolated from environmental or laboratory samples.</p

    Update: cohort mortality study of workers highly exposed to polychlorinated biphenyls (PCBs) during the manufacture of electrical capacitors, 1940-1998

    Get PDF
    BACKGROUND: The National Institute for Occupational Safety and Health previously reported mortality for a cohort of workers considered highly exposed to polychlorinated biphenyls (PCBs) between 1939 and 1977 at two electrical capacitor manufacturing plants. The current study updated vital status, examined liver and rectal cancer mortality previously reported in excess in this cohort and evaluated mortality from non-Hodgkin's lymphoma (NHL) and cancers of the stomach, intestine, breast, prostate, skin (melanoma) and brain reported to be in excess in other cohort and case-control studies of PCB-exposed persons. METHODS: Mortality was updated through 1998 for 2572 workers. Age-, gender-, race- and calendar year-adjusted standardized mortality ratios (SMRs) and 95% confidence intervals (CI) were calculated using U.S., state and county referent rates. SMRs using U.S. referent rates are reported. Duration of employment was used as a surrogate for exposure. RESULTS: Consistent with the previous follow-up, mortality from biliary passage, liver and gall bladder cancer was significantly elevated (11 deaths, SMR 2.11, CI 1.05 – 3.77), but mortality from rectal cancer was not (6 deaths, SMR 1.47, CI 0.54 – 3.21). Among women, mortality from intestinal cancer (24 deaths, SMR 1.89, CI 1.21 – 2.82) and from "other diseases of the nervous system and sense organs", which include Parkinson's disease and amyotrophic lateral sclerosis, (15 deaths, SMR 2.07, CI 1.16 – 3.42) were elevated. There were four ALS deaths, all women (SMR 4.35, CI 1.19–11.14). Mortality was elevated for myeloma (7 deaths, SMR 2.11, CI 0.84 – 4.34), particularly among workers employed 10 years or more (5 deaths, SMR 2.80, CI 0.91 – 6.54). No linear associations between mortality and duration of employment were observed for the cancers of interest. CONCLUSION: This update found that the earlier reported excess in this cohort for biliary, liver and gall bladder cancer persisted with longer follow-up. Excess mortality for intestinal cancer among women was elevated across categories of duration of employment; myeloma mortality was highest among those working 10 years or more. The small numbers of deaths from liver and intestinal cancers, myeloma and nervous system diseases coupled with the lack of an exposure-response relationship with duration of employment preclude drawing definitive conclusions regarding PCB exposure and these causes of death

    Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning

    Get PDF
    The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome
    corecore