202 research outputs found
Quantifying extreme behaviour in geomagnetic activity
Understanding the extremes in geomagnetic activity is an important component in understanding just how severe conditions can become in the terrestrial space environment. Extreme activity also has consequences for technological systems. On the ground, extreme geomagnetic behavior has an impact on navigation and position accuracy and the operation of power grids and pipeline networks. We therefore use a number of decades of one-minute mean magnetic data from magnetic observatories in Europe, together with the technique of extreme value statistics, to provide a preliminary exploration of the extremes in magnetic field variations and their one-minute rates of change. These extremes are expressed in terms of the variations that might be observed every 100 and 200 years in the horizontal strength and in the declination of the field. We find that both measured and extrapolated extreme values generally increase with geomagnetic latitude (as might be expected), though there is a marked maximum in estimated extreme levels between about 53 and 62 degrees north. At typical midlatitude European observatories (55–60 degrees geomagnetic latitude), compass variations may reach approximately 3–8 degrees/minute, and horizontal field changes may reach 1000–4000 nT/minute, in one magnetic storm once every 100 years. For storm return periods of 200 years the equivalent figures are 4–11 degrees/minute and 1000–6000 nT/minute
'Stable' QPOs and Black Hole Properties from Diskoseismology
We compare our calculations of the frequencies of the fundamental g, c, and
p--modes of relativistic thin accretion disks with recent observations of high
frequency QPOs in X-ray binaries with black hole candidates. These classes of
modes encompass all adiabatic perturbations of such disks. The frequencies of
these modes depend mainly on only the mass and angular momentum of the black
hole; their weak dependence on disk luminosity is also explicitly indicated.
Identifying the recently discovered relatively stable QPO pairs with the
fundamental g and c modes provides a determination of the mass and angular
momentum of the black hole. For GRO J1655-40, M=5.9\pm 1.0 M_\sun,
, in agreement with spectroscopic mass
determinations. For GRS 1915+105, M=42.4\pm 7.0 M_\sun, or (less favored) M=18.2\pm 3.1 M_\sun, . We briefly address the issues of the amplitude, frequency width,
and energy dependence of these QPOs.Comment: 10 pages, 1 figure. Accepted for publication in Astrophysical Journal
Letter
Electrostatic Patch Effect in Cylindrical Geometry. III. Torques
We continue to study the effect of uneven voltage distribution on two close
cylindrical conductors with parallel axes started in our papers [1] and [2],
now to find the electrostatic torques. We calculate the electrostatic potential
and energy to lowest order in the gap to cylinder radius ratio for an arbitrary
relative rotation of the cylinders about their symmetry axis. By energy
conservation, the axial torque, independent of the uniform voltage difference,
is found as a derivative of the energy in the rotation angle. We also derive
both the axial and slanting torques by the surface integration method: the
torque vector is the integral over the cylinder surface of the cross product of
the electrostatic force on a surface element and its position vector. The
slanting torque consists of two parts: one coming from the interaction between
the patch and the uniform voltages, and the other due to the patch interaction.
General properties of the torques are described. A convenient model of a
localized patch suggested in [2] is used to calculate the torques explicitly in
terms of elementary functions. Based on this, we analyze in detail patch
interaction for one pair of patches, namely, the torque dependence on the patch
parameters (width and strength) and their mutual positions. The effect of the
axial torque is then studied for the experimental conditions of the STEP
mission.Comment: 28 pages, 6 Figures. Submitted to Classical Quantum Gravit
On the Energy-Momentum Tensor of the Scalar Field in Scalar--Tensor Theories of Gravity
We study the dynamical description of gravity, the appropriate definition of
the scalar field energy-momentum tensor, and the interrelation between them in
scalar-tensor theories of gravity. We show that the quantity which one would
naively identify as the energy-momentum tensor of the scalar field is not
appropriate because it is spoiled by a part of the dynamical description of
gravity. A new connection can be defined in terms of which the full dynamical
description of gravity is explicit, and the correct scalar field
energy-momentum tensor can be immediately identified. Certain inequalities must
be imposed on the two free functions (the coupling function and the potential)
that define a particular scalar-tensor theory, to ensure that the scalar field
energy density never becomes negative. The correct dynamical description leads
naturally to the Einstein frame formulation of scalar-tensor gravity which is
also studied in detail.Comment: Submitted to Phys. Rev D15, 10 pages. Uses ReVTeX macro
The Covariant Entropy Bound, Brane Cosmology, and the Null Energy Condition
In discussions of Bousso's Covariant Entropy Bound, the Null Energy Condition
is always assumed, as a sufficient {\em but not necessary} condition which
helps to ensure that the entropy on any lightsheet shall necessarily be finite.
The spectacular failure of the Strong Energy Condition in cosmology has,
however, led many astrophysicists and cosmologists to consider models of dark
energy which violate {\em all} of the energy conditions, and indeed the current
data do not completely rule out such models. The NEC also has a questionable
status in brane cosmology: it is probably necessary to violate the NEC in the
bulk in order to obtain a "self-tuning" theory of the cosmological constant. In
order to investigate these proposals, we modify the Karch-Randall model by
introducing NEC-violating matter into in such a way that the brane
cosmological constant relaxes to zero. The entropy on lightsheets remains
finite. However, we still find that the spacetime is fundamentally incompatible
with the Covariant Entropy Bound machinery, in the sense that it fails the
Bousso-Randall consistency condition. We argue that holography probably forbids
all {\em cosmological} violations of the NEC, and that holography is in fact
the fundamental physical principle underlying the cosmological version of the
NEC.Comment: 21 pages, 3 figures, version 2:corrected and greatly improved
discussion of the Bousso-Randall consistency check, references added;
version3: more references added, JHEP versio
Newtonian Cosmology in Lagrangian Formulation: Foundations and Perturbation Theory
The ``Newtonian'' theory of spatially unbounded, self--gravitating,
pressureless continua in Lagrangian form is reconsidered. Following a review of
the pertinent kinematics, we present alternative formulations of the Lagrangian
evolution equations and establish conditions for the equivalence of the
Lagrangian and Eulerian representations. We then distinguish open models based
on Euclidean space from closed models based (without loss of generality)
on a flat torus \T^3. Using a simple averaging method we show that the
spatially averaged variables of an inhomogeneous toroidal model form a
spatially homogeneous ``background'' model and that the averages of open
models, if they exist at all, in general do not obey the dynamical laws of
homogeneous models. We then specialize to those inhomogeneous toroidal models
whose (unique) backgrounds have a Hubble flow, and derive Lagrangian evolution
equations which govern the (conformally rescaled) displacement of the
inhomogeneous flow with respect to its homogeneous background. Finally, we set
up an iteration scheme and prove that the resulting equations have unique
solutions at any order for given initial data, while for open models there
exist infinitely many different solutions for given data.Comment: submitted to G.R.G., TeX 30 pages; AEI preprint 01
- …