43 research outputs found

    Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes

    Get PDF
    We demonstrate solution processable large area field effect transistors (FETs) from aligned arrays of carbon nanotubes (CNTs). Commercially available, surfactant free CNTs suspended in aqueous solution were aligned between source and drain electrodes using ac dielectrophoresis technique. After removing the metallic nanotubes using electrical breakdown, the devices displayed p-type behavior with on-off ratios up to ~ 2X10^4. The measured field effect mobilities are as high as 123 cm2/Vs, which is three orders of magnitude higher than typical solution processed organic FET devices.Comment: 5 pages, 3 figure

    Effect of Hadron Dynamics on the Proton Lifetime

    Full text link
    A detailed, quantitative re-examination of the effect of hadron dynamics on baryon decay, modeled in terms of Skyrme-field tunneling, indicates that any hadronic suppression should be quite mild. This appears to be another illustration of the `Cheshire-cat' phenomenon, that variation of the apportionment between description of the nucleon as a bag of quarks and description as a Skyrme field configuration has little influence on many nucleon properties. Perhaps the largest remaining uncertainty in evaluating the decay rate has to do with the overlap between a specified quark-antiquark configuration and a final meson state.Comment: minor corrections, 19 pages, 9 figure

    Pion-Nucleon Scattering in a Large-N Sigma Model

    Full text link
    We review the large-N_c approach to meson-baryon scattering, including recent interesting developments. We then study pion-nucleon scattering in a particular variant of the linear sigma-model, in which the couplings of the sigma and pi mesons to the nucleon are echoed by couplings to the entire tower of I=J baryons (including the Delta) as dictated by large-N_c group theory. We sum the complete set of multi-loop meson-exchange \pi N --> \pi N and \pi N --> \sigma N Feynman diagrams, to leading order in 1/N_c. The key idea, reviewed in detail, is that large-N_c allows the approximation of LOOP graphs by TREE graphs, so long as the loops contain at least one baryon leg; trees, in turn, can be summed by solving classical equations of motion. We exhibit the resulting partial-wave S-matrix and the rich nucleon and Delta resonance spectrum of this simple model, comparing not only to experiment but also to pion-nucleon scattering in the Skyrme model. The moral is that much of the detailed structure of the meson-baryon S-matrix which hitherto has been uncovered only with skyrmion methods, can also be described by models with explicit baryon fields, thanks to the 1/N_c expansion.Comment: This LaTeX file inputs the ReVTeX macropackage; figures accompany i

    Solving the radial Dirac equations: a numerical odyssey

    Full text link
    We discuss, in a pedagogical way, how to solve for relativistic wave functions from the radial Dirac equations. After an brief introduction, in Section II we solve the equations for a linear Lorentz scalar potential, V_s(r), that provides for confinement of a quark. The case of massless u and d quarks is treated first, as these are necessarily quite relativistic. We use an iterative procedure to find the eigenenergies and the upper and lower component wave functions for the ground state and then, later, some excited states. Solutions for the massive quarks (s, c, and b) are also presented. In Section III we solve for the case of a Coulomb potential, which is a time-like component of a Lorentz vector potential, V_v(r). We re-derive, numerically, the (analytically well-known) relativistic hydrogen atom eigenenergies and wave functions, and later extend that to the cases of heavier one-electron atoms and muonic atoms. Finally, Section IV finds solutions for a combination of the V_s and V_v potentials. We treat two cases. The first is one in which V_s is the linear potential used in Sec. II and V_v is Coulombic, as in Sec. III. The other is when both V_s and V_v are linearly confining, and we establish when these potentials give a vanishing spin-orbit interaction (as has been shown to be the case in quark models of the hadronic spectrum).Comment: 39 pages (total), 23 figures, 2 table

    A general approach for high yield fabrication of CMOS compatible all semiconducting carbon nanotube field effect transistors

    Full text link
    We report strategies of achieving both high assembly yield of carbon nanotubes at selected position of the circuit via dielectrophoresis (DEP) and field effect transistor (FET) yield using semiconducting enriched single walled carbon nanotube (s-SWNT) aqueous solution. When the DEP parameters were optimized for the assembly of individual s-SWNT, 97% of the devices show FET behavior with a maximum mobility of 210 cm2/Vs, on-off current ratio ~ 106 and on conductance up to 3 {\mu}S, however with an assembly yield of only 33%. As the DEP parameters were optimized so that 1-5 s-SWNTs are connected per electrode pair, the assembly yield was almost 90% with ~ 90% of these assembled devices demonstrating FET behavior. Further optimization gives an assembly yield of 100% with up to 10 SWNT/site, however with a reduced FET yield of 59%. Improved FET performance including higher current on-off ratio and high switching speed were obtained by integrating a local Al2O3 gate to the device. Our 90% FET with 90% assembly yield is the highest reported so far for carbon nanotube devices. Our study provides a pathway which could become a general approach for the high yield fabrication of CMOS compatible carbon nanotube FETs.Comment: 20 pages, 6 figure

    Parity nonconserving two-pion exchange in elastic proton-proton scattering

    Full text link
    Parity nonconserving two-pion exchange in elastic pp scattering is investigated in the presence of phenomenological strong distortions in various models. Parity violation is included in the nucleon-pion vertex considering NN and N Delta(1232) intermediate states in box and crossed box diagrams. Using the derived parity nonconserving two-pion exchange potential we calculate the longitudinal analyzing power A_L in elastic pppp scattering. The predicted effect is of the same order as vector meson exchanges.Comment: 13 pages, 8 eps figure

    The pd <--> pi+ t reaction around the Delta resonance

    Full text link
    The pd pi+ t process has been calculated in the energy region around the Delta-resonance with elementary production/absorption mechanisms involving one and two nucleons. The isobar degrees of freedom have been explicitly included in the two-nucleon mechanism via pi-- and rho-exchange diagrams. No free parameters have been employed in the analysis since all the parameters have been fixed in previous studies on the simpler pp pi+ d process. The treatment of the few-nucleon dynamics entailed a Faddeev-based calculation of the reaction, with continuum calculations for the initial p-d state and accurate solutions of the three-nucleon bound-state equation. The integral cross-section was found to be quite sensitive to the NN interaction employed while the angular dependence showed less sensitivity. Approximately a 4% effect was found for the one-body mechanism, for the three-nucleon dynamics in the p-d channel, and for the inclusion of a large, possibly converged, number of three-body partial states, indicating that these different aspects are of comparable importance in the calculation of the spin-averaged observables.Comment: 40 Pages, RevTex, plus 5 PostScript figure

    Melting as a String-Mediated Phase Transition

    Full text link
    We present a theory of the melting of elemental solids as a dislocation-mediated phase transition. We model dislocations near melt as non-interacting closed strings on a lattice. In this framework we derive simple expressions for the melting temperature and latent heat of fusion that depend on the dislocation density at melt. We use experimental data for more than half the elements in the Periodic Table to determine the dislocation density from both relations. Melting temperatures yield a dislocation density of (0.61\pm 0.20) b^{-2}, in good agreement with the density obtained from latent heats, (0.66\pm 0.11) b^{-2}, where b is the length of the smallest perfect-dislocation Burgers vector. Melting corresponds to the situation where, on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.

    Semiclassical model for pion production by neutrons on nuclei

    No full text
    A model for pion production by neutrons on nuclei is derived by a straightforward extension of the semiclassical model for pion production by protons, previously described by two of the present authors, Silbar and Sternheim (1973). Both models are then applied to compute pion production cross sections for nucleons incident on Pb, Cu and Al, and pion absorption cross sections in nuclear matter. Results are consistent with (unpublished) experimental data from CERN. (10 refs)
    corecore