127 research outputs found

    The regulatory and catalytic subunits of cAMP-dependent protein kinases are associated with transcriptionally active chromatin during changes in gene expression.

    Get PDF
    Changes in the association of the catalytic subunit and the regulatory subunits of isozymes I and II of cAMP-dependent protein kinases (RI and RII, respectively) with the transcriptionally active chromatin fraction from rat liver were examined after a glucagon/theophylline injection and also after partial hepatectomy. Chromatin was partitioned into transcriptionally active and bulk, transcriptionally inactive fractions by digestion with micrococcal nuclease under appropriate conditions. In both experimental models, an increased content of catalytic and both RI and RII subunits was observed in chromatin fractions that were enriched in transcriptionally active DNA, particularly in the fraction associated with the residual nuclear matrix-lamina. The changes in the association of the subunits with these fractions paralleled the increases in intracellular cAMP levels and occurred in a time frame compatible with the changes in gene expression. The catalytic subunits could be removed from the nuclear matrix-lamina fraction by salt, whereas the two regulatory subunits remained tightly bound. The data support the concept of a direct role of the regulatory subunits of cAMP-dependent protein kinases in the induction of gene expression. However, we were unable to confirm that RII possessed an intrinsic topoisomerase activity

    A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer's patients and targets ATP6V0C for degradation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alterations in multiple cellular pathways contribute to the development of chronic neurodegeneration such as a sporadic Alzheimer's disease (AD). These, in turn, involve changes in gene expression, amongst which are genes regulating protein processing and turnover such as the components of the ubiquitin-proteosome system. Recently, we have identified a cDNA whose expression was altered in AD brains. It contained an open reading frame of 247 amino acids and represented a novel RING finger protein, RNF182. Here we examined its biochemical properties and putative role in brain cells.</p> <p>Results</p> <p>RNF182 is a low abundance cytoplasmic protein expressed preferentially in the brain. Its expression was elevated in post-mortem AD brain tissue and the gene could be up regulated <it>in vitro </it>in cultured neurons subjected to cell death-inducing injuries. Subsequently, we have established that RNF182 protein possessed an E3 ubiquitin ligase activity and stimulated the E2-dependent polyubiquitination <it>in vitro</it>. Yeast two-hybrid screening, overexpression and co-precipitation approaches revealed, both <it>in vitro </it>and <it>in vivo</it>, an interaction between RNF182 and ATP6V0C, known for its role in the formation of gap junction complexes and neurotransmitter release channels. The data indicated that RNF182 targeted ATP6V0C for degradation by the ubiquitin-proteosome pathway. Overexpression of RNF182 reduced cell viability and it would appear that by itself the gene can disrupt cellular homeostasis.</p> <p>Conclusion</p> <p>Taken together, we have identified a novel brain-enriched RING finger E3 ligase, which was up regulated in AD brains and neuronal cells exposed to injurious insults. It interacted with ATP6V0C protein suggesting that it may play a very specific role in controlling the turnover of an essential component of neurotransmitter release machinery.</p

    Identification of a new cAMP response element-binding factor by southwestern blotting.

    Get PDF
    We have identified in mammalian cells a novel cyclic AMP response element (CRE)-binding protein of molecular mass 47 kDa. This protein was not recognized by either the CREB-327/341 or c-Jun antisera, and its tissue distribution did not overlap with those of the CREB and Jun families. For example, hepatoma and placental tissue did not contain the 47-kDa DNA-binding protein, but did contain the CREB isoforms. On the other hand, S49 lymphoma cells contained a high level of the 47-kDa DNA-binding protein but did not contain a 47-kDa Jun-related protein which was found in normal liver and hepatoma. This new 47-kDa factor bound to the CRE in the dephosphorylated form, and phosphorylation of the protein by the catalytic subunit of protein kinase A completely abolished its DNA-binding activity. The isoforms of the CREB-327/341 family, on the other hand, bound to DNA in the phosphorylated form, and alkaline phosphatase treatment reduced significantly their interaction with CRE sequence. This reverse effect of phosphorylation/dephosphorylation on the DNA-binding property of this new 47-kDa protein in particular distinguishes it from other known CREB factors and suggests that the protein might play a unique role in the regulation of cAMP-mediated transcription

    Evolution of motif variants and positional bias of the cyclic-AMP response element

    Get PDF
    BACKGROUND: Transcription factors regulate gene expression by interacting with their specific DNA binding sites. Some transcription factors, particularly those involved in transcription initiation, always bind close to transcription start sites (TSS). Others have no such preference and are functional on sites even tens of thousands of base pairs (bp) away from the TSS. The Cyclic-AMP response element (CRE) binding protein (CREB) binds preferentially to a palindromic sequence (TGACGTCA), known as the canonical CRE, and also to other CRE variants. CREB can activate transcription at CREs thousands of bp away from the TSS, but in mammals CREs are found far more frequently within 1 to 150 bp upstream of the TSS than in any other region. This property is termed positional bias. The strength of CREB binding to DNA is dependent on the sequence of the CRE motif. The central CpG dinucleotide in the canonical CRE (TGACGTCA) is critical for strong binding of CREB dimers. Methylation of the cytosine in the CpG can inhibit binding of CREB. Deamination of the methylated cytosines causes a C to T transition, resulting in a functional, but lower affinity CRE variant, TGATGTCA. RESULTS: We performed genome-wide surveys of CREs in a number of species (from worm to human) and showed that only vertebrates exhibited a CRE positional bias. We performed pair-wise comparisons of human CREs with orthologous sequences in mouse, rat and dog genomes and found that canonical and TGATGTCA variant CREs are highly conserved in mammals. However, when orthologous sequences differ, canonical CREs in human are most frequently TGATGTCA in the other species and vice-versa. We have identified 207 human CREs showing such differences. CONCLUSION: Our data suggest that the positional bias of CREs likely evolved after the separation of urochordata and vertebrata. Although many canonical CREs are conserved among mammals, there are a number of orthologous genes that have canonical CREs in one species but the TGATGTCA variant in another. These differences are likely due to deamination of the methylated cytosines in the CpG and may contribute to differential transcriptional regulation among orthologous genes

    Terbium luminescence in synthetic peptide loops from calcium-binding proteins with different energy donors.

    Get PDF
    Fourteen 14-mer peptides corresponding to a consensus sequence of metal-binding loops from proteins of the calmodulin family were synthesized. The effect of varying both the position in the binding loop, and the type of aromatic side chains as energy donors for enhancement of terbium luminescence, was studied. It was concluded that tryptophan in loop position 7 gave optimal luminescence enhancement, and that the additional inclusion of a tyrosine in the loop at positions 2 or 4 could further boost emission from the bound terbium. In all further cases energy transfer from aromatic residues at positions other than 7 was markedly less efficient. These results suggest that the peptides assume a configuration which allows a hexadentate ligand structure around the bound terbium ion. This is consistent with a Dexter-type electron exchange model of energy transfer

    Transcriptional activation of the human brain-derived neurotrophic factor gene promoter III by dopamine signaling in NT2/N neurons

    Get PDF
    We have identified a functional cAMP-response element (CRE) in the human brain-derived neurotrophic factor (BDNF) gene promoter III and established that it participated in the modulation of BDNF expression in NT2/N neurons via downstream signaling from the D1 class of dopamine (DA) receptors. The up-regulation of BDNF expression, in turn, produced neuroprotective signals through receptor tyrosine kinase B (TrkB) and promoted cell survival under the conditions of oxygen and glucose deprivation. To our knowledge this is the first evidence showing the presence of a functional CRE in the human BDNF gene and the role of DA signaling in establishing transcriptional competence of CRE in post-mitotic NT2/N neurons. This ability of DA to regulate the expression of the BDNF survival factor has a profound significance for the nigrostriatal pathway, because it indicates the existence of a feedback loop between the neutrophin, which promotes both the maturation and survival of dopaminergic neurons, and the neurotransmitter, which the mature neurons ultimately produce and release

    Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: Neuroprotection and amelioration of symptoms by water-soluble formulation of Coenzyme Q10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance.</p> <p>Results</p> <p>Here we report that prophylactic application of water-soluble formulation of coenzyme Q<sub>10 </sub>could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the <it>substantia nigra </it>region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod) evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q<sub>10 </sub>in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats.</p> <p>Conclusion</p> <p>Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of Parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q<sub>10 </sub>formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses.</p

    Novel subtractive transcription-based amplification of mRNA (STAR) method and its application in search of rare and differentially expressed genes in AD brains

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel technology designed specifically to isolate rare and novel genes previously undetectable by other methods. We have used this method to identify differentially expressed genes in brains affected by AD. Our method, termed Subtractive Transcription-based Amplification of mRNA (STAR), is a combination of subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-differentially expressed transcripts and the linear amplification of the differentially expressed genes. RESULTS: Using the STAR technology we have identified over 800 differentially expressed sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over 55% of the sequences represent genes of unknown function and roughly half of them were novel and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were further confirmed by qRT-PCR and the association of additional genes with AD and/or neurodegeneration was established using an in-house literature mining tool (LitMiner). CONCLUSION: The STAR process significantly amplifies unique and rare sequences relative to abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD. This method also offers new opportunities to study the subtle changes in gene expression that potentially contribute to the development and/or progression of AD

    Genetic susceptibility model of Parkinson's disease resulting from exposure of DJ-1 deficient mice to MPTP: evaluation of neuroprotection by Ubisol-Q10.

    Get PDF
    IOS Press and the Editors were contacted by Pubpeer of suspected image manipulation of Figure 1, where a western blot image is turned and repeated (https://pubpeer.com/publications/6DCC9037670DD855DE16341C5842A3#1). After detailed considerations including discussion with the author, reviewers and editorial office, in the end the editorial office decided the scientific integrity could not be guaranteed. In this light the journal cannot condone publication of this paper and has decided to retract it from its online catalogue. The author states: "It was an error and an oversight on my behalf. We stand by all the corrected data, and we have all the slides, we confirmed similar findings in other models. This project was approved from our Animal Care Committee.
    • …
    corecore