674 research outputs found

    New Types of Thermodynamics from (1+1)(1+1)-Dimensional Black Holes

    Full text link
    For normal thermodynamic systems superadditivity §\S, homogeneity \H and concavity \C of the entropy hold, whereas for (3+1)(3+1)-dimensional black holes the latter two properties are violated. We show that (1+1)(1+1)-dimensional black holes exhibit qualitatively new types of thermodynamic behaviour, discussed here for the first time, in which \C always holds, \H is always violated and §\S may or may not be violated, depending of the magnitude of the black hole mass. Hence it is now seen that neither superadditivity nor concavity encapsulate the meaning of the second law in all situations.Comment: WATPHYS-TH93/05, Latex, 10 pgs. 1 figure (available on request), to appear in Class. Quant. Gra

    Veertig jaar vegetatiekartering

    Get PDF

    Exact Solution for the Metric and the Motion of Two Bodies in (1+1) Dimensional Gravity

    Get PDF
    We present the exact solution of two-body motion in (1+1) dimensional dilaton gravity by solving the constraint equations in the canonical formalism. The determining equation of the Hamiltonian is derived in a transcendental form and the Hamiltonian is expressed for the system of two identical particles in terms of the Lambert WW function. The WW function has two real branches which join smoothly onto each other and the Hamiltonian on the principal branch reduces to the Newtonian limit for small coupling constant. On the other branch the Hamiltonian yields a new set of motions which can not be understood as relativistically correcting the Newtonian motion. The explicit trajectory in the phase space (r,p)(r, p) is illustrated for various values of the energy. The analysis is extended to the case of unequal masses. The full expression of metric tensor is given and the consistency between the solution of the metric and the equations of motion is rigorously proved.Comment: 34 pages, LaTeX, 16 figure

    Effects of Uniaxial Stress on Antiferromagnetic Moment in the Heavy Electron Compound URu_2Si_2

    Full text link
    We have performed the elastic neutron scattering experiments under uniaxial stress \sigma along the tetragonal [100], [110] and [001] directions for URu2Si2. For \sigma // [100] and [110], the antiferromagnetic moment \mu_o is strongly enhanced from 0.02 \mu_B (\sigma=0) to 0.22 \mu_B (\sigma=2.5 kbar) at 1.5 K. The rate of increase d\mu_o/d\sigma is roughly estimated to be ~ 0.1 \mu_B/kbar, which is much larger than that for the hydrostatic pressure (~ 0.025 \mu_B/kbar). Above 2.5 kbar, \mu_o shows a tendency to saturate similar to the behavior in the hydrostatic pressure. For \sigma // [001], on the other hand, \mu_o shows only a slight increase to 0.028 \mu_B (\sigma = 4.6 kbar) with a rate of ~ 0.002 \mu_B/kbar. The observed anisotropy suggests that the competition between the hidden order and the antiferromagnetic state in URu2Si2 is strongly coupled with the tetragonal four-fold symmetry and the c/a ratio, or both.Comment: 3 pages, 3 eps figures, Proceedings of Int. Conf. on Strongly Correlated Electrons with Orbital Degrees of Freedom (Sendai, Japan, September 11-14, 2001

    Theory of Unconventional Spin Density Wave: A Possible Mechanism of the Micromagnetism in U-based Heavy Fermion Compounds

    Full text link
    We propose a novel spin density wave (SDW) state as a possible mechanism of the anomalous antiferromagnetism, so-called the micromagnetism, in URu_2Si_2 below 17.5[K]. In this new SDW, the electron-hole pair amplitude changes its sign in the momentum space as in the case of the unconventional superconductivity. It is shown that this state can be realized in an extended Hubbard model within the mean field theory. We also examine some characteristic properties of this SDW to compare with the experimental results. All these properties well explain the unsolved problem of the micromagnetism.Comment: REVTeX v3.1, 4 pages, 5 figure

    Membrane Lipid Requirements of the Lysine Transporter Lyp1 from Saccharomyces cerevisiae

    Get PDF
    Membrane lipids act as solvents and functional cofactors for integral membrane proteins. The yeast plasma membrane is unusual in that it may have a high lipid order, which coincides with low passive permeability for small molecules and a slow lateral diffusion of proteins. Yet, membrane proteins whose functions require altered conformation must have flexibility within membranes. We have determined the molecular composition of yeast plasma membrane lipids located within a defined diameter of model proteins, including the APC-superfamily lysine transporter Lyp1. We now use the composition of lipids that naturally surround Lyp1 to guide testing of lipids that support the normal functioning of the transporter, when reconstituted in vesicles of defined lipid composition. We find that phosphatidylserine and ergosterol are essential for Lyp1 function, and the transport activity displays a sigmoidal relationship with the concentration of these lipids. Non-bilayer lipids stimulate transport activity, but different types are interchangeable. Remarkably, Lyp1 requires a relatively high fraction of lipids with one or more unsaturated acyl chains. The transport data and predictions of the periprotein lipidome of Lyp1, support a new model in which a narrow band of lipids immediately surrounding the transmembrane stalk of a model protein allows conformational changes in the protein

    Induced-Moment Weak Antiferromagnetism and Orbital Order on the Itinerant-Localized Duality Model with Nested Fermi Surface: A Possible Origin of Exotic Magnetism in URu2{}_{2}Si2_{2}

    Full text link
    The weak antiferromagnetism of URu2{}_{2}Si2{}_{2} is discussed on the basis of a duality model which takes into account salient features of both itinerant fermions and "localized" component of spin degrees of freedom. The problem is analyzed in the framework of induced-moment mechanism by taking a singlet-singlet crystal field scheme together with the nesting property of partial Fermi surface of itinerant fermions . It is shown that the extremely small ordered moment mm of O{\cal O}(10−210^{-2}×\timesÎŒB\mu_{B}) can be compatible with the large specific-heat jump at the transition temperature TNT_{N}. Analysis performed in the presence of external magnetic field shows that the field dependence of mm in the limit T\to 0 and T_{N}$ do not scale except very near the critical field B which is consistent with a recent observation by Mentink. It is also shown that the antiferromagnetic magnetic order gives rise to a tiny amount of antiferromagnetic orbital order of f-electrons.Comment: 14 pages, 2 figure PS file, accepted J. Phys. Soc. Jp

    Conservation Laws and 2D Black Holes in Dilaton Gravity

    Full text link
    A very general class of Lagrangians which couple scalar fields to gravitation and matter in two spacetime dimensions is investigated. It is shown that a vector field exists along whose flow lines the stress-energy tensor is conserved, regardless of whether or not the equations of motion are satisfied or if any Killing vectors exist. Conditions necessary for the existence of Killing vectors are derived. A new set of 2D black hole solutions is obtained for one particular member within this class of Lagrangians. One such solution bears an interesting resemblance to the 2D string-theoretic black hole, yet contains markedly different thermodynamic properties.Comment: 11 pgs. WATPHYS-TH92/0

    Evolution of Heterogeneous Antiferromagnetic State in URu2Si2: Study of Hydrostatic-Pressure, Uniaxial-Stress and Rh-Dope Effects

    Full text link
    We have investigated the nature of the competition between hidden order and antiferromagnetic (AF) order in URu_2Si_2 by performing the neutron scattering experiments under hydrostatic-pressure P, uniaxial-stress sigma, and Rh-substitution conditions. Hidden order observed at ambient pressure in pure URu_2Si_2 is found to be replaced by the AF order by applying P, sigma along the tetragonal basal plane, and by doping Rh. We discuss these experimental results on the basis of the crystalline strain calculations, and suggest that this phase transition is generated by the 0.1% increase of the tetragonal c/a ratio. We have also found that the magnetic excitation observed in the hidden order phase vanishes in the AF phase. We show that this variation can be qualitatively explained by assuming the hidden order parameter to be quadrupole.Comment: 4 pages, 4 figures, proceedings of workshop on Novel Pressure-Induced Phenomena In Condensed Matter Systems, 2006 Fukuok
    • 

    corecore