204 research outputs found

    Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network

    Full text link
    We propose an heterogeneous multi-task learning framework for human pose estimation from monocular image with deep convolutional neural network. In particular, we simultaneously learn a pose-joint regressor and a sliding-window body-part detector in a deep network architecture. We show that including the body-part detection task helps to regularize the network, directing it to converge to a good solution. We report competitive and state-of-art results on several data sets. We also empirically show that the learned neurons in the middle layer of our network are tuned to localized body parts

    Polychlorinated Biphenyls (PCBs) Enhance Metastatic Properties of Breast Cancer Cells by Activating Rho-Associated Kinase (ROCK)

    Get PDF
    Background: Polychlorinated biphenyls (PCBs) are a family of structurally related chlorinated aromatic hydrocarbons. Numerous studies have documented a wide spectrum of biological effects of PCBs on human health, such as immunotoxicity, neurotoxocity, estrogenic or antiestrogenic activity, and carcinogensis. The role of PCBs as etiologic agents for breast cancer has been intensively explored in a variety of in vivo, animal and epidemiologic studies. A number of investigations indicated that higher levels of PCBs in mammary tissues or sera correlated to breast cancer risk, and PCBs might be implicated in advancing breast cancer progression. Methodology/Principal Findings: In the current study, we for the first time report that PCBs greatly promote the ROCK activity and therefore increase cell motility for both non-metastatic and metastatic human breast cancer cells in vitro. In the in vivo study, PCBs significantly advance disease progression, leading to enhanced capability of metastatic breast cancer cells to metastasize to bone, lung and liver. Additionally, PCBs robustly induce the production of intracellular reactive oxygen species (ROS) in breast cancer cells; ROS mechanistically elevate ROCK activity. Conclusions/Significance: PCBs enhance the metastatic propensity of breast cancer cells by activating the ROCK signaling, which is dependent on ROS induced by PCBs. Inhibition of ROCK may stand for a unique way to restrain metastases in breast cancer upon PCB exposure

    Feature extraction of four-class motor imagery EEG signals based on functional brain network

    Get PDF
    Objective. A motor-imagery-based brainā€“computer interface (MI-BCI) provides an alternative way for people to interface with the outside world. However, the classification accuracy of MI signals remains challenging, especially with an increased number of classes and the presence of high variations with data from multiple individual people. This work investigates electroencephalogram (EEG) signal processing techniques, aiming to enhance the classification performance of multiple MI tasks in terms of tackling the challenges caused by the vast variety of subjects. Approach. This work introduces a novel method to extract discriminative features by combining the features of functional brain networks with two other feature extraction algorithms: common spatial pattern (CSP) and local characteristic-scale decomposition (LCD). After functional brain networks are established from the MI EEG signals of the subjects, the measures of degree in the binary networks are extracted as additional features and fused with features in the frequency and spatial domains extracted by the CSP and LCD algorithms. A real-time BCI robot control system is designed and implemented with the proposed method. Subjects can control the movement of the robot through four classes of MI tasks. Both the BCI competition IV dataset 2a and real-time data acquired in our designed system are used to validate the performance of the proposed method. Main results. As for the offline data experiment results, the average classification accuracy of the proposed method reaches 79.7%, outperforming the majority of popular algorithms. Experimental results with real-time data also prove the proposed method to be highly promising in its real-time performance. Significance. The experimental results show that our proposed method is robust in extracting discriminative brain activity features when performing different MI tasks, hence improving the classification accuracy in four-class MI tasks. The high classification accuracy and low computational demand show a considerable practicality for real-time rehabilitation systems

    Circular RNA circNOL10 Inhibits Lung Cancer Development by Promoting SCLM1-Mediated Transcriptional Regulation of the Humanin Polypeptide Family

    Get PDF
    circNOL10 is a circular RNA expressed at low levels in lung cancer, though its functions in lung cancer remain unknown. Here, the function and molecular mechanism of circNOL10 in lung cancer development are investigated using in vitro and in vivo studies, and it is shown that circNOL10 significantly inhibits the development of lung cancer and that circNOL10 expression is coā€regulated by methylation of its parental gene Preā€NOL10 and by splicing factor epithelial splicing regulatory protein 1 (ESRP1). circNOL10 promotes the expression of transcription factor sex comb on midlegā€like 1 (SCML1) by inhibiting transcription factor ubiquitination and thus also affects regulation of the humanin (HN) polypeptide family by SCML1. circNOL10 also affects mitochondrial function through regulating the humanin polypeptide family and affecting multiple signaling pathways, ultimately inhibiting cell proliferation and cell cycle progression, and promoting the apoptosis of lung cancer cells, thereby inhibiting lung cancer development. This study investigates the functions and molecular mechanisms of circNOL10 in the development of lung cancer and reveals its involvement in the transcriptional regulation of the HN polypeptide family by SCML1. The results also demonstrate the inhibitory effect of HN on lung cancer cells growth. These findings may identify novel targets for the molecular therapy of lung cancer

    Pharmacological effects and mechanisms of paeonol on antitumor and prevention of side effects of cancer therapy

    Get PDF
    Cancer represents one of the leading causes of mortality worldwide. Conventional clinical treatments include radiation therapy, chemotherapy, immunotherapy, and targeted therapy. However, these treatments have inherent limitations, such as multidrug resistance and the induction of short- and long-term multiple organ damage, ultimately leading to a significant decrease in cancer survivorsā€™ quality of life and life expectancy. Paeonol, a nature active compound derived from the root bark of the medicinal plant Paeonia suffruticosa, exhibits various pharmacological activities. Extensive research has demonstrated that paeonol exhibits substantial anticancer effects in various cancer, both in vitro and in vivo. Its underlying mechanisms involve the induction of apoptosis, the inhibition of cell proliferation, invasion and migration, angiogenesis, cell cycle arrest, autophagy, regulating tumor immunity and enhanced radiosensitivity, as well as the modulation of multiple signaling pathways, such as the PI3K/AKT and NF-ĪŗB signaling pathways. Additionally, paeonol can prevent adverse effects on the heart, liver, and kidneys induced by anticancer therapy. Despite numerous studies exploring paeonolā€™s therapeutic potential in cancer, no specific reviews have been conducted. Therefore, this review provides a systematic summary and analysis of paeonolā€™s anticancer effects, prevention of side effects, and the underlying mechanisms involved. This review aims to establish a theoretical basis for the adjunctive strategy of paeonol in cancer treatment, ultimately improving the survival rate and enhancing the quality of life for cancer patients

    CloudBrain-NMR: An Intelligent Cloud Computing Platform for NMR Spectroscopy Processing, Reconstruction and Analysis

    Full text link
    Nuclear Magnetic Resonance (NMR) spectroscopy has served as a powerful analytical tool for studying molecular structure and dynamics in chemistry and biology. However, the processing of raw data acquired from NMR spectrometers and subsequent quantitative analysis involves various specialized tools, which necessitates comprehensive knowledge in programming and NMR. Particularly, the emerging deep learning tools is hard to be widely used in NMR due to the sophisticated setup of computation. Thus, NMR processing is not an easy task for chemist and biologists. In this work, we present CloudBrain-NMR, an intelligent online cloud computing platform designed for NMR data reading, processing, reconstruction, and quantitative analysis. The platform is conveniently accessed through a web browser, eliminating the need for any program installation on the user side. CloudBrain-NMR uses parallel computing with graphics processing units and central processing units, resulting in significantly shortened computation time. Furthermore, it incorporates state-of-the-art deep learning-based algorithms offering comprehensive functionalities that allow users to complete the entire processing procedure without relying on additional software. This platform has empowered NMR applications with advanced artificial intelligence processing. CloudBrain-NMR is openly accessible for free usage at https://csrc.xmu.edu.cn/CloudBrain.htmlComment: 11 pages, 13 figure

    Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A and Promotes Breast Cancer Stem-Like Cells

    Get PDF
    Chronic stress triggers activation of the sympathetic nervous system and drives malignancy. Using an immunodeficient murine system, we showed that chronic stressā€“induced epinephrine promoted breast cancer stem-like properties via lactate dehydrogenase Aā€“dependent (LDHA-dependent) metabolic rewiring. Chronic stressā€“induced epinephrine activated LDHA to generate lactate, and the adjusted pH directed USP28-mediated deubiquitination and stabilization of MYC. The SLUG promoter was then activated by MYC, which promoted development of breast cancer stem-like traits. Using a drug screen that targeted LDHA, we found that a chronic stressā€“induced cancer stem-like phenotype could be reversed by vitamin C. These findings demonstrated the critical importance of psychological factors in promoting stem-like properties in breast cancer cells. Thus, the LDHA-lowering agent vitamin C can be a potential approach for combating stress-associated breast cancer
    • ā€¦
    corecore