3 research outputs found

    MONITORING THE DIVERSITY OF RHIZOBIUM-MELILOTI FIELD AND MICROCOSM ISOLATES WITH A NOVEL RAPID GENOTYPING METHOD USING INSERTION ELEMENTS

    No full text
    KOSIER B, PĂĽhler A, SIMON R. MONITORING THE DIVERSITY OF RHIZOBIUM-MELILOTI FIELD AND MICROCOSM ISOLATES WITH A NOVEL RAPID GENOTYPING METHOD USING INSERTION ELEMENTS. MOLECULAR ECOLOGY. 1993;2(1):35-46.Rhizobium meliloti strains isolated from alfalfa plants grown in a mining recultivation field, in a model ecosystem (microcosm) and in soil core containers were characterized by two new taxonomic methods, fingerprinting and handprinting, using insertion sequence elements (IS) as hybridization probes. The diversity of strains within the field population could first be detected with IS-fingerprinting, whereby nearly three times more groups of Rhizobium meliloti strains could be identified in comparison to the groups according to plasmid profiles. This complexity and diversity of the rhizobial population was also detected in microcosm studies. Strains identified among the field population were also detected in the microcosm studies. The persistence of rhizobia in soil was demonstrated in soil core samples held in a cold room for 2 years. A decrease in the genomic diversity of the R. meliloti population upon soil storage was observed. A novel monitoring method, IS-handprinting, in which the presence of certain endogenous insertion elements within a strain is registered, was successfully employed to characterize genetically the field R. meliloti strains with simplicity and speed. In contrast to IS-fingerprinting, IS-handprinting is based on a simple plus-or-minus detection, which is sufficient for a taxonomic characterization. Both methods, using a non-radioactive detection system, are sensitive enough to detect one copy of an insertion element in a strain's genome. IS-fingerprinting, with its fine resolution, would be suitable for ecological studies of individual strains in any complex ecosystem, whereas IS-handprinting would be suitable for monitoring strains and characterizing large numbers of strains

    Intravenous NPA for the treatment of infarcting myocardium early: InTIME-II, a double-blind comparison on of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction

    No full text
    Aims to compare the efficacy and safety of lanoteplase, a single-bolus thrombolytic drug derived from alteplase tissue plasminogen activator, with the established accelerated alteplase regimen in patients presenting within 6 h of onset of ST elevation acute myocardial infarction. Methods and Results 15 078 patients were recruited from 855 hospitals worldwide and randomized in a 2:1 ratio to receive either lanoteplase 120 KU. kg-1 as a single intravenous bolus, or up to 100 mg accelerated alteplase given over 90 min. The primary end-point was all-cause mortality at 30 days and the hypothesis was that the two treatments would be equivalent. By 30 days, 6.61% of alteplase-treated patients and 6.75% lanoteplase-treated patients had died (relative risk 1.02). Total stroke occurred in 1.53% alteplase- and 1.87% lanoteplase-treated patients (ns); haemorrhagic stroke rates were 0.64% alteplase and 1.12% lanoteplase (P=0.004). The net clinical deficit of 30-day death or non-fatal disabling stroke was 7.0% and 7.2%, respectively. By 6 months, 8.8% of alteplase-treated patients and 8.7% of lanoteplase-treated patients had died. Conclusion Single-bolus weight-adjusted lanoteplase is an effective thrombolytic agent, equivalent to alteplase in terms of its impact on survival and with a comparable risk-benefit profile. The single-bolus regimen should shorten symptoms to treatment times and be especially convenient for emergency department or out-of-hospital administration. (C) 2000 The European Society of Cardiology
    corecore