66 research outputs found

    A priori knowledge-free fast positioning approach for BeiDou receivers

    Full text link
    A Global Navigation Satellite System (GNSS) receiver usually needs a sufficient number of full pseudorange measurements to obtain a position solution. However, it is time-consuming to acquire full pseudorange information from only the satellite broadcast signals due to the navigation data features of GNSS. In order to realize fast positioning during a cold or warm start in a GNSS receiver, the existing approaches require an initial estimation of position and time or require a number of computational steps to recover the full pseudorange information from fractional pseudoranges and then compute the position solution. The BeiDou Navigation Satellite System (BDS) has a unique constellation distribution and a fast navigation data rate for geostationary earth orbit (GEO) satellites. Taking advantage of these features, we propose a fast positioning technique for BDS receivers. It simultaneously processes the full and fractional pseudorange measurements from the BDS GEOs and non-GEOs, respectively, which is faster than processing all full measurements. This method resolves the position solution and recovers the full pseudoranges for non-GEOs simultaneously within 1 s theoretically and does not need an estimate of the initial position. Simulation and real data experiments confirm that the proposed technique completes fast positioning without a priori position and time estimation, and the positioning accuracy is identical with the conventional single-point positioning approach using full pseudorange measurements from all available satellites

    Range-only Collaborative Localization for Ground Vehicles

    Full text link
    High-accuracy absolute localization for a team of vehicles is essential when accomplishing various kinds of tasks. As a promising approach, collaborative localization fuses the individual motion measurements and the inter-vehicle measurements to collaboratively estimate the states. In this paper, we focus on the range-only collaborative localization, which specifies the inter-vehicle measurements as inter-vehicle ranging measurements. We first investigate the observability properties of the system and derive that to achieve bounded localization errors, two vehicles are required to remain static like external infrastructures. Under the guide of the observability analysis, we then propose our range-only collaborative localization system which categorize the ground vehicles into two static vehicles and dynamic vehicles. The vehicles are connected utilizing a UWB network that is capable of both producing inter-vehicle ranging measurements and communication. Simulation results validate the observability analysis and demonstrate that collaborative localization is capable of achieving higher accuracy when utilizing the inter-vehicle measurements. Extensive experimental results are performed for a team of 3 and 5 vehicles. The real-world results illustrate that our proposed system enables accurate and real-time estimation of all vehicles' absolute poses.Comment: Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019

    Attention-Block Deep Learning Based Features Fusion in Wearable Social Sensor for Mental Wellbeing Evaluations

    Get PDF
    With the progressive increase of stress, anxiety and depression in working and living environment, mental health assessment becomes an important social interaction research topic. Generally, clinicians evaluate the psychology of participants through an effective psychological evaluation and questionnaires. However, these methods suffer from subjectivity and memory effects. In this paper, a new multi- sensing wearable device has been developed and applied in self-designed psychological tests. Speech under different emotions as well as behavior signals are captured and analyzed. The mental state of the participants is objectively assessed through a group of psychological questionnaires. In particular, we propose an attention-based block deep learning architecture within the device for multi-feature classification and fusion analysis. This enables the deep learning architecture to autonomously train to obtain the optimum fusion weights of different domain features. The proposed attention-based architecture has led to improving performance compared with direct connecting fusion method. Experimental studies have been carried out in order to verify the effectiveness and robustness of the proposed architecture. The obtained results have shown that the wearable multi-sensing devices equipped with the attention-based block deep learning architecture can effectively classify mental state with better performance
    • …
    corecore