35 research outputs found

    Experimental tests of the chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na3_3Bi and GdPtBi

    Full text link
    In the Dirac/Weyl semimetal, the chiral anomaly appears as an "axial" current arising from charge-pumping between the lowest (chiral) Landau levels of the Weyl nodes, when an electric field is applied parallel to a magnetic field B\bf B. Evidence for the chiral anomaly was obtained from the longitudinal magnetoresistance (LMR) in Na3_3Bi and GdPtBi. However, current jetting effects (focussing of the current density J\bf J) have raised general concerns about LMR experiments. Here we implement a litmus test that allows the intrinsic LMR in Na3_3Bi and GdPtBi to be sharply distinguished from pure current jetting effects (in pure Bi). Current jetting enhances JJ along the mid-ridge (spine) of the sample while decreasing it at the edge. We measure the distortion by comparing the local voltage drop at the spine (expressed as the resistance RspineR_{spine}) with that at the edge (RedgeR_{edge}). In Bi, RspineR_{spine} sharply increases with BB but RedgeR_{edge} decreases (jetting effects are dominant). However, in Na3_3Bi and GdPtBi, both RspineR_{spine} and RedgeR_{edge} decrease (jetting effects are subdominant). A numerical simulation allows the jetting distortions to be removed entirely. We find that the intrinsic longitudinal resistivity ρxx(B)\rho_{xx}(B) in Na3_3Bi decreases by a factor of 10.9 between BB = 0 and 10 T. A second litmus test is obtained from the parametric plot of the planar angular magnetoresistance. These results strenghthen considerably the evidence for the intrinsic nature of the chiral-anomaly induced LMR. We briefly discuss how the squeeze test may be extended to test ZrTe5_5.Comment: 17 pages, 8 figures, new co-authors added, new Fig. 6a added. In press, PR

    Attribute Graph Clustering via Learnable Augmentation

    Full text link
    Contrastive deep graph clustering (CDGC) utilizes contrastive learning to group nodes into different clusters. Better augmentation techniques benefit the quality of the contrastive samples, thus being one of key factors to improve performance. However, the augmentation samples in existing methods are always predefined by human experiences, and agnostic from the downstream task clustering, thus leading to high human resource costs and poor performance. To this end, we propose an Attribute Graph Clustering method via Learnable Augmentation (\textbf{AGCLA}), which introduces learnable augmentors for high-quality and suitable augmented samples for CDGC. Specifically, we design two learnable augmentors for attribute and structure information, respectively. Besides, two refinement matrices, including the high-confidence pseudo-label matrix and the cross-view sample similarity matrix, are generated to improve the reliability of the learned affinity matrix. During the training procedure, we notice that there exist differences between the optimization goals for training learnable augmentors and contrastive learning networks. In other words, we should both guarantee the consistency of the embeddings as well as the diversity of the augmented samples. Thus, an adversarial learning mechanism is designed in our method. Moreover, a two-stage training strategy is leveraged for the high-confidence refinement matrices. Extensive experimental results demonstrate the effectiveness of AGCLA on six benchmark datasets

    Dink-Net: Neural Clustering on Large Graphs

    Full text link
    Deep graph clustering, which aims to group the nodes of a graph into disjoint clusters with deep neural networks, has achieved promising progress in recent years. However, the existing methods fail to scale to the large graph with million nodes. To solve this problem, a scalable deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink. Firstly, by discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner. Meanwhile, the cluster centres are initialized as learnable neural parameters. Subsequently, the clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss in an adversarial manner. By these settings, we unify the two-step clustering, i.e., representation learning and clustering optimization, into an end-to-end framework, guiding the network to learn clustering-friendly features. Besides, Dink-Net scales well to large graphs since the designed loss functions adopt the mini-batch data to optimize the clustering distribution even without performance drops. Both experimental results and theoretical analyses demonstrate the superiority of our method. Compared to the runner-up, Dink-Net achieves 9.62% NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges. The source code is released at https://github.com/yueliu1999/Dink-Net. Besides, a collection (papers, codes, and datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering.Comment: 19 pages, 5 figure

    Hard Sample Aware Network for Contrastive Deep Graph Clustering

    Full text link
    Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via contrastive mechanisms, is a challenging research spot. Among the recent works, hard sample mining-based algorithms have achieved great attention for their promising performance. However, we find that the existing hard sample mining methods have two problems as follows. 1) In the hardness measurement, the important structural information is overlooked for similarity calculation, degrading the representativeness of the selected hard negative samples. 2) Previous works merely focus on the hard negative sample pairs while neglecting the hard positive sample pairs. Nevertheless, samples within the same cluster but with low similarity should also be carefully learned. To solve the problems, we propose a novel contrastive deep graph clustering method dubbed Hard Sample Aware Network (HSAN) by introducing a comprehensive similarity measure criterion and a general dynamic sample weighing strategy. Concretely, in our algorithm, the similarities between samples are calculated by considering both the attribute embeddings and the structure embeddings, better revealing sample relationships and assisting hardness measurement. Moreover, under the guidance of the carefully collected high-confidence clustering information, our proposed weight modulating function will first recognize the positive and negative samples and then dynamically up-weight the hard sample pairs while down-weighting the easy ones. In this way, our method can mine not only the hard negative samples but also the hard positive sample, thus improving the discriminative capability of the samples further. Extensive experiments and analyses demonstrate the superiority and effectiveness of our proposed method.Comment: 9 pages, 6 figure

    Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment

    Full text link
    Temporal graph learning aims to generate high-quality representations for graph-based tasks along with dynamic information, which has recently drawn increasing attention. Unlike the static graph, a temporal graph is usually organized in the form of node interaction sequences over continuous time instead of an adjacency matrix. Most temporal graph learning methods model current interactions by combining historical information over time. However, such methods merely consider the first-order temporal information while ignoring the important high-order structural information, leading to sub-optimal performance. To solve this issue, by extracting both temporal and structural information to learn more informative node representations, we propose a self-supervised method termed S2T for temporal graph learning. Note that the first-order temporal information and the high-order structural information are combined in different ways by the initial node representations to calculate two conditional intensities, respectively. Then the alignment loss is introduced to optimize the node representations to be more informative by narrowing the gap between the two intensities. Concretely, besides modeling temporal information using historical neighbor sequences, we further consider the structural information from both local and global levels. At the local level, we generate structural intensity by aggregating features from the high-order neighbor sequences. At the global level, a global representation is generated based on all nodes to adjust the structural intensity according to the active statuses on different nodes. Extensive experiments demonstrate that the proposed method S2T achieves at most 10.13% performance improvement compared with the state-of-the-art competitors on several datasets

    Reinforcement Graph Clustering with Unknown Cluster Number

    Full text link
    Deep graph clustering, which aims to group nodes into disjoint clusters by neural networks in an unsupervised manner, has attracted great attention in recent years. Although the performance has been largely improved, the excellent performance of the existing methods heavily relies on an accurately predefined cluster number, which is not always available in the real-world scenario. To enable the deep graph clustering algorithms to work without the guidance of the predefined cluster number, we propose a new deep graph clustering method termed Reinforcement Graph Clustering (RGC). In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework by the reinforcement learning mechanism. Concretely, the discriminative node representations are first learned with the contrastive pretext task. Then, to capture the clustering state accurately with both local and global information in the graph, both node and cluster states are considered. Subsequently, at each state, the qualities of different cluster numbers are evaluated by the quality network, and the greedy action is executed to determine the cluster number. In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters. Extensive experiments demonstrate the effectiveness and efficiency of our proposed method. The source code of RGC is shared at https://github.com/yueliu1999/RGC and a collection (papers, codes and, datasets) of deep graph clustering is shared at https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering on Github
    corecore